Annual Report Format

National Pollutant Discharge Elimination System Stormwater Program MS4 Annual Report Format

Check box if you are submitting an individual Annual Report with one or more cooperative program	\times
elements.	

Check box if you are submitting an individual Annual Report with individual program elements only.

Check box if this is a new name, address, etc. \Box

1. MS4(s) Information

UNIVERSITY OF NEW MEXICO		
Name of MS4		
Casey	Hall	Director, EHS
Name of Contact Person (First)	(Last)	(Title)
505-277-0305	cbhall4@unm.edu	
Telephone (including area code)	E-mail	
1801 Tucker Rd NE		
Mailing Address		
Albuquerque	NM	87131
City	State	ZIP code
What size population does your MS4	(s) serve? 33,000 N	PDES number
What is the reporting period for this r	eport? (mm/dd/yyyy) From Jul 1, 20	D20 to Jun 30, 2021
B. If yes, identify each impaire		3(d) list?
additional pages as necessar Impaired Water		proved TMDL TMDL assigns WLA to MS4
Imparied water	Impanment App	NOVED TWIDE TWIDE assigns wEA to W34
AMAFCA (NDC) to Rio Grande	NM 2105_50	Yes 🗌 No 🛛 Yes 🗌 No
AMAFCA (SDC) to Rio Grande	NM 2105_50	Yes 🗌 No 🛛 Yes 🗌 No
		Yes No Yes No

Yes

No No

Yes

No No

2. B. Continued

Impaired Water		Impairment	Approved TMDL TMDL assigns		WLA to MS4	
			Yes	🗌 No	Yes	🗌 No
			Yes	🗌 No	Yes	🗌 No
			Yes	🗌 No	Yes	🗌 No
			Yes	🗌 No	Yes	🗌 No
C.	What specific sources cont	ributing to the impairment(s) are you	ı targeting in	your stormv	vater program	?
Trash,	debris, sediment, pet waste	e (E. coli), hazardous chemicals, was	te from birds	s (E. coli), fats	s, oils, nutrier	its
D.		gh-quality waters (e.g., Tier 2, Tier 3 ate or federal designation)?	3, outstanding	g natural	Yes	🔀 No
E.	Are you implementing add	itional specific provisions to ensure	heir continue	ed integrity?	Yes	🔀 No
	pollutants?	blic Participation ogram targeting specific pollutants a c sources and/or pollutants addressed			⊠ Yes a program?	🗌 No
Trash,	debris, animal waste.					
C.		atcome(s) (e.g., quantified reduction le to your public education program				blications)
		2/4/16 article on stormwater in "Insi Dumping, only Rain in The Drain" r				0 storm drain
D.		ommittee or other body comprised of regular input on your stormwater pro		nd other	Yes	🔀 No
4. A.	Construction Do you have an ordinance	or other regulatory mechanism stipu	lating:			
	Erosion and sediment cont	rol requirements?			Xes Yes	No No
	Other construction waste c	ontrol requirements?			X Yes	🗌 No
	Requirement to submit cor	nstruction plans for review?			🔀 Yes	🗌 No
	MS4 enforcement authorit	y?			X Yes	🗌 No
В.	Do you have written proce	dures for:				
	Reviewing construction pla	ans?			🔀 Yes	🗌 No
	Performing inspections?				🔀 Yes	🗌 No
	Responding to violations?				🔀 Yes	🗌 No
C.	Identify the number of acti	ve construction sites ≥ 1 acre in oper	ation in you	jurisdiction	at any time d	uring the
	reporting period. 1					
D.	How many of the sites iden	ntified in 4.C did you inspect during	this reporting	g period?	1	
E.	Describe, on average, the f	frequency with which your program	conducts con	struction site	inspections.	
On ave	erage, once a month during	construction, and within 24 hours	after a storm	event.		

F.	Do you	prioritize	certain	construction	sites for	more free	uent ins	pections?

If Yes, based on what criteria?

Sites under active construction during monsoon season

G. Identify which of the following types of enforcement actions you used during the reporting period for construction activities, indicate the number of actions, or note those for which you do not have authority:

	Yes Notice of violation		No Authority	\boxtimes			
	Yes Administrative fines		No Authority	\boxtimes			
	Yes Stop Work Orders	0	No Authority				
	Yes Civil penalties		No Authority	\boxtimes			
	Yes Criminal actions		No Authority	\boxtimes			
	Yes Administrative orders		No Authority	\boxtimes			
	Yes Other						
H.	. Do you use an electronic tool (e.g. inspection results, and enforcemen jurisdiction?				Xes Yes	🗌 No	
I.	What are the 3 most common type	s of violations doc	cumented during this r	reporting perio	d?		
None	found during reporting period						
J.	How often do municipal employee	s receive training	on the construction pr	ogram?	o training thi	s period	
5. A.	Illicit Discharge Elimination Have you completed a map of all or system?	outfalls and receiv	ing waters of your sto	rm sewer	X Yes	🗌 No	
В.	Have you completed a map of all s sewer system?	torm drain pipes a	and other conveyances	s in the storm	X Yes	No No	
C.	Identify the number of outfalls in y	our storm sewer s	system. None				
D.	. Do you have documented procedu	res, including freq	uency, for screening of	outfalls?	X Yes	🗌 No	
E.	Of the outfalls identified in 5.C, ho	w many were scre	eened for dry weather	discharges du	ring this repo	rting period?	
1	None						
F. Of the outfalls identified in 5.C, how many have been screened for dry weather discharges at any time since you obtained MS4 permit coverage?							
G.	What is your frequency for screeni	ng outfalls for illi	cit discharges? Descr	ibe any variati	on based on s	ize/type.	
	does not have what would be consi is into major drainage channels with			•			
Н.	. Do you have an ordinance or other discharges?	regulatory mecha	nism that effectively	prohibits illici	t 🛛 Yes	No	
I.	Do you have an ordinance or other to take enforcement action and/or n				¹ Xes	🗌 No	

	J.	During this reporting period, how many illicit discharges/illegal connections have you discovered?					
	K.	K. Of those illicit discharges/illegal connections that have been discovered or reported, how many have been					
		eliminated? 0					
	L.	How often do municipal employees receive training on the illicit discharge program?	Annual, delayed	d-COVID			
 6. Stormwater Management for Municipal Operations A. Have stormwater pollution prevention plans (or an equivalent plan) been developed for: 							
	Al	l public parks, ball fields, other recreational facilities and other open spaces	X Yes	🗌 No			
	Al	l municipal construction activities, including those disturbing less than 1 acre	X Yes	🗌 No			
	Al	l municipal turf grass/landscape management activities	Xes Yes	🗌 No			
	Al	I municipal vehicle fueling, operation and maintenance activities	🔀 Yes	🗌 No			
	Al	l municipal maintenance yards	X Yes	🗌 No			
	Al	l municipal waste handling and disposal areas	Xes Yes	🗌 No			
	Ot	her					
	B.	Are stormwater inspections conducted at these facilities? \square Yes \square No					
	C.	If Yes, at what frequency are inspections conducted? At least annually					
	D.	List activities for which operating procedures or management practices specific to storm been developed (e.g., road repairs, catch basin cleaning).	water managemen	nt have			
	anag	gement practices are in place for street sweeping, trash pickup, and stormwater mainte	enance				
	E.	Do you prioritize certain municipal activities and/or facilities for more frequent inspection?	Yes	🛛 No			
	F. If Yes, which activities and/or facilities receive most frequent inspections?						
	~						
	G.	Do all municipal employees and contractors overseeing planning and implementation of stormwater-related activities receive comprehensive training on stormwater management		🗌 No			
	H.	If yes, do you also provide regular updates and refreshers?	Yes	🛛 No			
	I.	If so, how frequently and/or under what circumstances?					
		taff overseeing stormwater-related activities have experience and college degrees wit water management. Maintenance employees are trained annually on UNM's SW progra					
7.	A.	Long-term (Post-Construction) Stormwater Measures Do you have an ordinance or other regulatory mechanism to require:					
	Sit	e plan reviews for stormwater/water quality of all new and re-development projects?	X Yes	No			
		ng-term operation and maintenance of stormwater management controls?	Xes	□ No			
	Re	trofitting to incorporate long-term stormwater management controls?	Yes	🖂 No			
	B.	If you have retrofit requirements, what are the circumstances/criteria?					
	С	What are your criteria for determining which new/re-development stormwater plans you projects, projects disturbing greater than one acre, etc.)?	ı will review (e.g.	, all			

New and redevelopment projects that disturb >= 1 ac; projects disturbing < 1ac that are part of a > 1ac common plan for development.

Do you require water quality or quantity design standards or performance standards, either directly or by reference to a state or other standard, be met for new development and re-development?				
E. Do these performance or design standards require that pre-development hydrology be met for	r:			
Flow volumes	X Yes	🗌 No		
Peak discharge rates	Xes Yes	🗌 No		
Discharge frequency	Yes	🔀 No		
Flow duration	Yes	🔀 No		
F. Please provide the URL/reference where all post-construction stormwater management stand	lards can be f	ound.		
https://pdc.unm.edu/assets/documents/SRS-ContractorRequirements_rev4.2012.pdf to be	updated this	s year		
G. How many development and redevelopment project plans were reviewed during the reportin impacts to water quality and receiving stream protection? [29]	g period to as	sess		
H. How many of the plans identified in 7.G were approved? 29				
I. How many privately owned permanent stormwater management practices/facilities were ins	pected during	the		
reporting period? 13				
J. How many of the practices/facilities identified in I were found to have inadequate maintenar	None			
K. How long do you give operators to remedy any operation and maintenance deficiencies iden	tified during			
inspections? until next scheduled maint				
L. Do you have authority to take enforcement action for failure to properly operate and maintain stormwater practices/facilities?	Yes 🛛	No		
M. How many formal enforcement actions (i.e., more than a verbal or written warning) were tak	en for failure	to		
adequately operate and/or maintain stormwater management practices?				
N. Do you use an electronic tool (e.g., GIS, database, spreadsheet) to track post-construction BMPs, inspections and maintenance?	Yes 🖂	No		
O. Do all municipal departments and/or staff (as relevant) have access to this tracking system?	Yes 🛛	No		
P. How often do municipal employees receive training on the post-construction program?	nual, from 20	017		
Program Resources				
A. What was the annual expenditure to implement MS4 permit requirements this reporting period	od? 150,00	00		
B. What is next year's budget for implementing the requirements of your MS4 NPDES permit?	150,000			
C. This year what is/are your source(s) of funding for the stormwater program, and annual reve	nue (amount	or		
percentage) derived from each?				
Source: Amount \$	OR %	100		
Source: Amount \$	OR %			
Source: Amount \$	OR %			
Amount \$				
D. How many FTEs does your municipality devote to the stormwater program (specifically for	implementing	g the		

Page 5 of 6	

1 FTE

stormwater program; not municipal employees with other primary responsibilities)?

8.

E. Do you share program implementation responsibilities with any other entities? Xes No

Entity	Activity/Task/Responsibility	Your Oversight/Accountability Mechanism
Cooperative	stormwater compliance monitoring	Intergovernmental Agreement

9. Evaluating/Measuring Progress

A. What indicators do you use to evaluate the overall effectiveness of your stormwater management program, how long have you been tracking them, and at what frequency? These are not measurable goals for individual management practices or tasks, but large-scale or long-term metrics for the overall program, such as macroinvertebrate community indices, measures of effective impervious cover in the watershed, indicators of in-stream hydrologic stability, etc.

Indicator	Began Tracking (year)	Frequency	Number of Locations
<i>Example:</i> E. coli	2003	Weekly April–September	20
Recycling Waste Diversion Program	2012	Annual	
Outreach to UNM community	2012	Semi annual	
IDDE Inspections	2018	Annual	13

B. What environmental quality trends have you documented over the duration of your stormwater program? Reports or summaries can be attached electronically, or provide the URL to where they may be found on the Web.

See report Middle Rio Grande E. Coli Analysis and Research: http://www.amafca.org/documents/2015_Annual_Report/ AMAFCA%202015%20%28Jan%20to%20June%29%20Annual%20Report%20II.A%20-%20VI.pdf

10. Additional Information

Please attach any additional information on the performance of your MS4 program, including information required in Parts I.C, I.D, and III.B. If providing clarification to any of the questions above, please provide the question number (e.g., 2C) in your response.

Certification Statement and Signature

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Federal regulations require this application to be signed as follows: **For a municipal, State, Federal, or other public facility**: by either a principal executive or ranking elected official.

Signature

Teresa Costantinidis, Senior Vice President

Date (mm/dd/yyyy)

No No

X Yes

Name of Certifying Official, Title

Department of Environmental Health & Safety MSC07 4100, 1 University of New Mexico Albuquerque, NM 87131-0001 Phone: 505-277-2753 Fax: 505-277-9006 Email: EHSWEB-L@list.unm.edu

Executive Summary

The University of New Mexico's (UNM) Environmental Health and Safety (EHS) department prepared this MS4 Annual Report (Report). This Report supports the requirements of the United States Environmental Protection Agency's (EPA) National Pollutant Discharge Elimination System (NPDES) Middle Rio Grande (MRG) Watershed Based Municipal Separate Stormwater Sewer System (MS4) Permit, No. NMR04A000 (MS4 Permit). The Permit requires UNM to implement a program to reduce pollutants in stormwater runoff to the maximum extent practicable.

UNM is a public research university located in central Albuquerque, New Mexico, serving a faculty, staff, and student population of 33,000. The main campus is approximately 600 acres, split into three parts – North, Central, and South. Central Campus sits between Central Avenue on the south, Girard Boulevard on the east, Lomas Boulevard on the north, and University Boulevard on the west. It is home to the primary academic operations of the university. North Campus, which includes the medical and law schools, is located on the north side of Lomas Boulevard across from Central Campus. South Campus is a mile south of Central Campus, centered around University Boulevard and Avenida César Chavez. It primarily houses athletic facilities and UNM's Science and Technology Park.

UNM campuses contain numerous buildings and facilities with large areas of impervious surfaces, which have stormwater implications. UNM's MS4 serves all three campuses, draining to the west toward the Rio Grande. However, the system drains stormwater to the City of Albuquerque (COA) and the Albuquerque Municipal Arroyo Flood Control Authority (AMAFCA) MS4, diversion channels, or arroyos.

EHS implements the MS4 Program on behalf of UNM, complying with the provisions of the MS4 Permit. The MS4 Program:

- (1) Educates and engages with the public, faculty, staff, and students on stormwater pollution prevention;
- (2) Detects and eliminates illicit discharges to the MS4;
- (3) Monitors and minimizes the release of pollutants, sediment, trash, and debris to the MS4;
- (4) Encourages post-construction best management practices such as Green Infrastructure and Low Impact Development; and
- (5) Performs training for staff on good housekeeping and pollution prevention.

This Report summarizes the changes, updates, progress, and limitations of the MS4 Program from the previous reporting year (July 1, 2020 – June 30, 2021). In addition, the Report also addresses UNM's water quality priorities, long-term stormwater management measures, program resources, and program evaluation efforts.

EHS continues to welcome comments, questions, and feedback on this Report and the MS4 Program.

CONSTRUCTION SITE STORMWATER RUNOFF CONTROLS						
Permit Activity	Proposed Plan	Measurable Goal	Status			
1.1 Development of an ordinance or other regulatory mechanism as required in Part I.D.5.a.(ii)(a), The program must include the development, implementation, and enforcement of, at a minimum: (a) An ordinance or other regulatory mechanism to require erosion and sediment controls, as well as sanctions to ensure compliance, to the extent allowable under State, Tribal or local law;	 Environmental Health and Safety (EHS), Facilities Management (FM) and the Office of Planning, Design & Construction (PDC) will continue to review, revise and enforce existing design and construction standards and guidelines, and develop new guidelines where appropriate. EHS Contractor requirements for new and remodeled UNM facilities requires: For projects disturbing > 1 acre of soil or pavement: prior to breaking ground, contractor must make required EPA notifications (e.g., NOI and NOT) obtain an NPDES permit or waiver, and develop and comply with any required sitespecific Stormwater Pollution Prevention Plan (SWPPP). EHS may request revision of contractor's SWPPP. UNM may withhold payment for contractor non-compliance. Any required stormwater controls must be regularly inspected & maintained over project duration. Washing out construction equipment onsite Permitted in FM-approved pit locations for biodegradable and non-hazardous water-based material (e.g., latex paints) wash rinsate. Rinsate of water-based paints may also be washed down the sanitary sewers if FM allows. Concrete Rinsate must be contained and disposed of offsite. 	Revisions to existing policy, design, or construction standards and guidelines; or the creation of new policy, design, or construction standards and guidelines that pertain to erosion and sediment control will be tracked and reported in the annual report.	EHS continues to review and propose revisions to its Design Guidelines. During this reporting period, EHS began the implementation of the UNM Construction Safety Manual. The manual includes requirements for contractors to follow EPA notification procedures. Additionally, the contractor is required to regularly inspect construction sites with regular audits by UNM EHS.			

CONSTRUCTION SITE STORMWATER RUNOFF CONTROLS			
Permit Activity	Proposed Plan	Measurable Goal	Status
	 c. Oil- & solvent-based materials washing rinsate must be properly disposed off-site. d. No on-site disposal of unused materials other than clean soil with FM approval. 4. Trash Control – all exterior trash that may become wind-blown or wash off-site with stormwater must be picked up at least daily. 5. As the site operator, the constructor (GC or CM, etc.) will be responsible for all EPA Construction General Permit (CGP) requirements, e.g., but not limited to meeting & maintaining construction site stormwater quality discharge requirements, SWPPPs, NOIs, BMPs, inspections, record- keeping, reporting, monitoring, NOTs, etc. until UNM formal acceptance of the completed project. 		
 1.2. Develop requirements and procedures as required in Part I.D.5.a.(ii)(b) through in Part I.D.5.a.(ii)(h) (b) Requirements for construction site operators to implement appropriate erosion and sediment control best management practices (both structural and non-structural); (c) Requirements for construction site operators to control waste such as, but not limited to, discarded building 	 (See proposed activities listed for permit activity 1.1 above). EHS and its sister departments will continue to inform UNM contractors of requirements and review necessary documents (i.e., erosion control plan, SWPPP/eNOI application and fugitive dust permit) during the Construction Review Process. EHS and its sister departments will continue to oversee UNM contractors 	Revisions to existing policy, design, or construction standards and guidelines; or the creation of new policy, design, or construction standards and guidelines that pertain to erosion and sediment control will be tracked and	During the reporting period, only one construction project greater than 1 acre was completed. The project turned an abandoned building into a permeable surface parking lot. During the review period, EHS identified and reviewed site plans for the above- mentioned project.

CONSTRUCTION SITE STORMWATER RUNOFF CONTROLS			
Permit Activity	Proposed Plan	Measurable Goal	Status
Permit Activitymaterials, concrete truck washout, chemicals, litter, and sanitary waste at the construction site that may cause adverse impacts to water quality (see EPA guidance at http://cfpub.epa.gov/npdes/stormwater/m enuofbmps/index.cfm?action=browse&R button=detail&bmp =117);(d) Procedures for site plan review which incorporate consideration of potential water quality impacts. The site plan review must be conducted prior to commencement of construction activities, and include a review of the site design, the planned operations at the construction site, the planned control measures during the construction phase (including the technical criteria for selection of the control measures), and the planned controls to be used to manage runoff created after the development;(e) Procedures for receipt and consideration of information submitted		Measurable Goalreported in the annual report.• EHS and its sister departments will maintain records of documents required from contractors pertaining to Stormwater (i.e., erosion control plan, SWPP/eNOI application, and fugitive dust permit). The number of documents will be reported in the annual report.• Site plan reviews and evaluation of opportunities for incorporating green infrastructure (GI) will be documented and report.	EHS reviewed plans for future construction to incorporate GI/LID. Inspection checklists have been developed for inspecting construction sites. The inspections are conducted by EHS personnel at least once a month and within 24 hours after a storm event of 0.25" or greater. The UNM SWMP was finalized and sent to PDC and FM and is being implemented. Training material on stormwater management and pollution prevention was finalized, and training was not provided to the UNM Grounds and Landscaping Staff during the reporting period due to COVID-19. During this reporting period,
consideration of information submitted by the public;	 infrastructure (GI). UNM will continue to comply with the	annual report.Finalized inspection	During this reporting period, the Elks Lodge Parking lot was inspected for stormwater
(f) Procedures for site inspection (during construction) and enforcement of control measures, including provisions to ensure proper construction, operation, maintenance, and repair. The procedures must clearly define who is responsible for site inspections; who has the	 CGP, including SWPPP preparation and eNOI application for all public projects greater than one acre. e) UNM continues to welcome public participation in its SWMP. The draft SWMP was published for public 	will be included in the annual report as an appendix.	management compliance. Inspection procedures for exterior construction sites less than 1-acre have been completed and are incorporated into this SWMP

CONSTRUCTION SITE STORMWATER RUNOFF CONTROLS			
Permit Activity	Proposed Plan	Measurable Goal	Status
procedures; and the steps utilized to	Public comments were reviewed and	EHS will maintain	and included in the annual
identify priority sites for inspection and	addressed accordingly. The EHS	records of the number	report as an appendix.
enforcement based on the nature of the	Department continues involving other	of trainings offered	
construction activity, topography, and	UNM departments, e.g., FM, PDC,	on the SWMP and	Training for the UNM
the characteristics of soils and the quality	etc., as stakeholders in the	general stormwater	Facilities management is on
of the receiving water. If a construction	development and revision of UNM's	pollution prevention	hold due to COVID-19.
site operator fails to comply with	SWMP.	(P2) basics and will	
procedures or policies established by the		report these in the	
permittee, the permittee may request	• f) UNM will continue to develop	annual report.	
EPA enforcement assistance. The site	inspection procedures for exterior		
inspection and enforcement procedures	construction sites less than 1-acre.		
must describe sanctions and enforcement	The new procedures will include: (1)		
mechanism(s) for violations of permit	determining who is responsible for		
requirements and penalties with detail	conducting UNM construction site		
regarding corrective action follow-up	stormwater quality inspections;		
procedures, including enforcement	determining who has authority to		
escalation procedures for recalcitrant or	implement enforcement procedures		
repeat offenders. Possible sanctions	regarding construction stormwater		
include non-monetary penalties (such as	quality at UNM; developing a process		
stop work orders and/or permit denials	for prioritizing sites for inspection and		
for non-compliance), as well as monetary	enforcement based on type of		
penalties such as fines and bonding	construction activity; inspecting all		
requirements;	sites greater than 1-acre at least once		
	per month and follow up on any		
(g) Procedures to educate and train	deficiencies to ensure corrective		
permittee personnel involved in the	action; inspecting sites once project		
planning, review, permitting, and/or	team believes final site stabilization is		
approval of construction site plans,	complete; and describing enforcement		
inspections and enforcement. Education	procedures and any penalties for		
and training shall also be provided for	repeated non-compliance at a UNM		
developers, construction site operators,	construction site.		
contractors and supporting personnel,			
including requiring a stormwater	• The leadership of PDC & FM will be		
pollution prevention plan for	engaged by EHS in the development		
construction sites within the permitee's	and implementation of UNM's SWMP.		
jurisdiction;	Once the SWMP is finalized, training		
	on the SWMP and general stormwater		

CONSTRUCTION SITE STORMWAT	ER RUNOFF CONTROLS		
Permit Activity	Proposed Plan	Measurable Goal	Status
 (h) Procedures for keeping records of and tracking all regulated construction activities within the MS4, i.e. site reviews, inspections, inspection reports, warning letters and other enforcement documents. A summary of the number and frequency of site reviews, inspections (including inspector's checklist for oversight of sediment and erosion controls and proper disposal of construction wastes) and enforcement activities that are conducted annually and cumulatively during the permit term shall be included in each annual report; 	 pollution prevention (P2) basics will be offered. UNM will continue its procedures for construction project record-keeping, including, site reviews, inspections, inspection reports, any enforcement letters & documents. 		
 1.3. Annually conduct site inspections of 100 percent of all construction projects cumulatively disturbing one (1) or more acres as required in Part I.D.5.a.(iii): (iii) Annually conduct site inspections of 100 percent of all construction projects cumulatively disturbing one (1) or more acres within the MS4 jurisdiction. Site inspections are to be followed by any necessary compliance or enforcement action. Follow-up inspections are to be conducted to ensure corrective maintenance has occurred; and, all projects must be inspected at completion for confirmation of final stabilization. 	 UNM will continue to develop inspection procedures for 100% of all exterior construction projects cumulatively disturbing one (1) or more acres. The new procedures will include: (1) determining who is responsible for conducting UNM construction site stormwater quality inspections; determining who has authority to implement enforcement procedures regarding construction stormwater quality at UNM; developing a process for prioritizing sites for inspection and enforcement based on type of construction activity; inspecting all sites greater than 1-acre at least once per year and follow up on any deficiencies to ensure corrective action; inspecting sites once project team believes final site stabilization is complete; and describing enforcement procedures and any penalties for repeated non-compliance at a UNM 	Finalized inspection procedures and the number of site inspections done will be included in the annual report as an appendix.	Inspection checklists have been developed for inspecting construction sites. The inspections are conducted by EHS personnel at least once a month and within 24 hours after a storm event. Written procedures on how the inspections should be conducted have been completed and are incorporated into this SWMP. The only site that met this criterion last year has been closed, and there are currently no projects disturbing 1 acre or more of land.

CONSTRUCTION SITE STORMWATER RUNOFF CONTROLS			
Permit Activity	Proposed Plan	Measurable Goal	Status
	construction site. The procedures will be developed and inspections began no later than December 20, 2016.		
1.4. Coordinate with all departments and boards with jurisdiction over the planning, review, permitting, or approval of public and private construction projects/activities within the permit area as required in Part I.D.5.a.(iv); (iv) The permittee must coordinate with all departments and boards with jurisdiction over the planning, review, permitting, or approval of public and private construction projects/activities within the permit area to ensure that the construction stormwater runoff controls eliminate erosion and maintain sediment on site. Planning documents include, but are not limited to: comprehensive or master plans, subdivision ordinances, general land use plan, zoning code, transportation master plan, specific area plans, such as sector plan, site area plans, corridor plans, or unified development ordinances.	 EHS will continue to coordinate all UNM departments who have a role in construction activities to ensure proper controls are in place to eliminate erosion and reduce the transport of sediment from construction projects. EHS acts in an advisory role for projects under 1 acre and ensures compliance in projects 1 acre or greater. Inform UNM contractors of requirements and review necessary documents (i.e., erosion control plan, SWPP/eNOI application and fugitive dust permit) during the Construction Review Process. EHS and its sister departments will continue to oversee UNM contractors to ensure that they comply with federal law, municipal ordinance and contractual provisions and implementing a Stormwater Pollution Prevention Plan (SWPP). EHS and its sister departments will continue to review site plans and attend pre-construction review meetings to try to ensure quality requirements. The plan review must occur prior to construction and focus on construction and post-construction stormwater quality measures that address likely impacts and public concerns. Site plan review must 	UNM will include a summary of regulated construction activities in the Annual Report.	During the reporting period, EHS reviewed project planning and design documents and participated in regular construction project meetings that included construction companies, Facilities Management (FM), Planning, Design and Construction (PDC), Parking and Transportation Services (PATS), and other UNM departments. EHS provided input to ensure proper controls are in place to eliminate erosion and reduce the transport of sediment from construction project sites. Examples of projects include the Elks Lodge Parking Lot.

CONSTRUCTION SITE STORMWATER RUNOFF CONTROLS			
Permit Activity	Proposed Plan	Measurable Goal	Status
	include evaluation of opportunities for incorporating green infrastructure (GI).		
1.5. Evaluation of GI/LID/Sustainable practices in site plan reviews as required in Part I.D.5.a.(v): (v) The site plan review required in Part I.D.5.a.(ii)(d) must include an evaluation of opportunities for use of GI/LID/Sustainable practices and when the opportunity exists, encourage project proponents to incorporate such practices into the site design to mimic the pre- development hydrology of the previously undeveloped site. For purposes of this permit, pre-development hydrology shall be met according to Part I.D.5.b of this permit. (consistent with any limitations on that capture). Include a reporting requirement of the number of plans that had opportunities to implement these practices and how many incorporated these practices.	• EHS and its sister departments will continue to review site plans and attend pre-construction review meetings to try to ensure consistency with applicable stormwater quality requirements. The plan review must occur prior to construction and focus on construction and post-construction stormwater quality measures that address likely impacts and public concerns. Site plan review must include evaluation of opportunities for incorporating green infrastructure (GI).	EHS will include in the Annual Report the number of opportunities to incorporate GI and the number of times GI has actually been incorporated.	During the reporting period, EHS reviewed 1 Construction project at Domenici Hall for incorporation of GI/LID.
 1.6. Enhance the program to include program elements in Part I.D.5.a.(viii) through Part I.D.5.a.(x): (viii) The permittee may use stormwater educational materials locally developed or provided by the EPA (refer to http://water.epa.gov/polwaste/npdes/swb mp/index.cfm, http://www.epa.gov/smartgrowth/parking .htm, http://www.epa.gov/smartgrowth 	 UNM will utilize its own, or when appropriate, publicly available stormwater educational material to enhance its stormwater program. Where applicable, UNM will refer to existing local, state and federal construction handbooks and stormwater management guidelines to ensure consistency and compliance with promulgated construction and development effluent limitation guidelines. 	EHS participated in the revision/update of the local "NPDES Stormwater Management Guideline for Construction and Industrial Activities Handbook." It is now completed. UNM will include an update on educational materials in its annual report.	UNM has used stormwater educational materials provided by the EPA and CABQ to enhance its stormwater education training and outreach material. UNM has also created its own stormwater education training and outreach material. Copies of UNM's education training and outreach material are available upon request.

CONSTRUCTION SITE STORMWAT	ER RUNOFF CONTROLS		
Permit Activity	Proposed Plan	Measurable Goal	Status
 environmental, public interest or trade organizations, and/or other MS4s. (ix) The permittee may develop or update existing construction handbooks (e.g., the COA NPDES Stormwater Management Guidelines for Construction and Industrial Activities Handbook) to be consistent with promulgated construction and development effluent limitation guidelines. (x) The construction site inspections required in Part I.D.5.a.(iii) may be carried out in conjunction with the permittee's building code inspections using a screening prioritization process. 			No changes were made to the NPDES Stormwater Management Guideline for Construction and Industrial Activities Handbook.
1.7. Describe other proposed activities to address the Construction Site Stormwater Runoff Control Measure: POST_CONSTRUCTION STORMWAY	 No additional activities are being proposed at this time. UNM will continue to explore additional activities to address the Construction Site Stormwater Runoff Control Measure. FER MANAGEMENT IN NEW DEVELOPMENT	Additional proposed activities will be reported in the annual report.	
Permit Activity	Proposed Plan	Measurable Goal	
 2.1. Development of strategies as required in Part I.D.5.b.(ii).(a): (ii) The program must include the development, implementation, and enforcement of, at a minimum: (a) Strategies which include a combination of structural and/or non- 	• EHS will work with its sister departments (e.g. FM, PDC and Parking and Transportation Services) to propose implementation of design review and construction, as well as operation and maintenance procedures to assure structural and/or non- structural best management practices	• Submit draft policies, procedures, guidelines, protocols regarding Stormwater	The EHS Design guidelines state that for projects disturbing greater than 1 acre of soil or pavement the project must be reviewed for GI/LID.

CONSTRUCTION SITE STORMWATER RUNOFF CONTROLS			
Permit Activity	Proposed Plan	Measurable Goal	Status
structural best management practices (BMPs) to control pollutants in stormwater runoff.	 (BMPs) to control pollutants in stormwater runoff. EHS will propose the development of contractual procedures to ensure implementation of UNM's SWMP in UNM development and redevelopment projects. By February 20 2016, EHS will work to develop and adopt design standards, including methodology, to estimate water quality impacts and selection of controls. 	Quality upon completion. • Submit cumulative changes in UNM's Stormwater Management Program in the Annual Report.	For final site design, retain on-site all stormwater discharge in excess of natural pre- development discharges for up to a 2-inch rain event or whatever the current CABQ Development Process Manual (DPM) requires. UNM's Stormwater Operations and Maintenance Manual addresses non-structural BMPs to control pollutants in stormwater runoff. EHS is in the process of creating a guidance document for designers and project managers to meet stormwater requirements. Where applicable, UNM will utilize guidance from the April 2002 EPA Manual, <i>Urban</i> <i>Stormwater BMP</i> <i>Performance</i> <i>Monitoring</i> , on how to estimate water quality impacts of BMPs, when feasible.

CONSTRUCTION SITE STORMWAT			
Permit Activity	Proposed Plan	Measurable Goal	Status
2.2. Development of an ordinance or other regulatory mechanism as required in Part I.D.5.b.(ii).(b): (b) An ordinance or other regulatory mechanism to address post-construction runoff from new development and redevelopment projects to the extent allowable under State, Tribal or local law. The ordinance or policy must: Incorporate a stormwater quality design standard that manages on-site the 90th percentile storm event discharge volume associated with new development sites and 80th percentile storm event discharge volume associated with redevelopment sites, through stormwater controls that infiltrate, evapotranspire the discharge volume, except in instances where full compliance cannot be achieved, as provided in Part I.D.5.b.(v). The stormwater from rooftop discharge may be harvested and used on-site for non- commercial use. Any controls utilizing impoundments that are also used for flood control that are located in areas where the New Mexico Office of the State Engineer requirements at NMAC 19.26.2.15 (see also Section 72-5-32 NMSA) apply must drain within 96 hours unless the state engineer has issued a waiver to the owner of the impoundment.	 EHS will work with its sister departments (FM, PDC and Parking and Transportation Services etc.) to develop and adopt design standards, policy and enforcement mechanisms for requiring on-site management of 90th percentile storm events discharge volume associated with new development sites and 80th percentile storm event discharge volume associated with redevelopment sites. 	Submit finalized policies, procedures, guidelines, protocols regarding Stormwater Quality upon completion of finalized draft.	EHS continues to work with FM, PDC, and PATS to comply with stormwater rules and implement GI/LID on projects. EHS continues to reevaluate its estimation of the 90th and 80th percentile storm event with the most recently available data in accordance with the methods in "Estimating Predevelopment Hydrology in the Middle Rio Grande Watershed, New Mexico, EPA Publication Number 832-R-14-007". EHS is in the process of publishing revised values in a guidance document for designers and project managers.

CONSTRUCTION SITE STORMWATER RUNOFF CONTROLS			
Permit Activity	Proposed Plan	Measurable Goal	Status
Options to implement the site design			
standard include, but not limited to:			
management of the discharge volume			
achieved by canopy interception, soil			
amendments, rainfall harvesting, rain			
tanks and cisterns, engineered			
infiltration, extended filtration, dry			
swales, bioretention, roof top			
disconnections,			
permeable pavement, porous concrete,			
permeable pavers, reforestation, grass			
channels, green roofs and other			
appropriate techniques, and any			
combination of these practices, including			
implementation of			
other stormwater controls used to reduce			
pollutants in stormwater (e.g., a water			
quality facility).			
Estimation of the 90th or 80th percentile			
storm event discharge volume is			
included in EPA Technical Report			
entitled "Estimating Predevelopment			
Hydrology in the Middle Rio Grande			
Watershed, New Mexico, EPA			
Publication Number 832-R-14-007".			
Permittees can also estimate:			
i ennitees can also estimate.			
Option A: a site specific 90th or 80th			
percentile storm event discharge volume			
using methodology specified in the			
referenced EPA Technical Report.			
L			
Option B: a site specific pre-			
development hydrology and associated			
storm event discharge volume using			

CONSTRUCTION SITE STORMWAT	ER RUNOFF CONTROLS		
Permit Activity	Proposed Plan	Measurable Goal	Status
methodology specified in the referenced EPA technical Report.			
2.3. Implementation and enforcement, via the ordinance or other regulatory mechanism, of site design standards as required in Part I.D.5.b.(ii).(b).	 UNM, unlike municipalities, does not have formal enforcement authority through ordinances. UNM may use contractual mechanisms if necessary, and does regular consultation with contractors, to ensure compliance with UNM design guidelines. Therefore, UNM will not pursue a separate monitoring and enforcement mechanisms of UNM design standards and guidelines. 		EHS continues to consult with contractors on a regular basis to ensure compliance with UNM design guidelines.
 2.4. Ensure appropriate implementation of structural controls as required in Part I.D.5.b.(ii).(c) and Part I.D.5.b.(ii).(d): (d) The permittee must ensure that the post-construction program requirements are constantly reviewed and revised as appropriate to incorporate improvements in control techniques; 	• Once developed, the post construction program requirements will be monitored, reviewed and revised as appropriate by EHS, with input from other departments, on an annual basis. A process will be put in place by June 20, 2017.	• In each annual report to EPA, EHS will report any changes/revision s to UNM's Post- Construction Program.	EHS is in the process of creating updated guidance for designers and project managers, which outlines stormwater infrastructure requirements and best practices for FM and PDC.
 2.5. Develop procedures as required in Part I.D.5.b.(ii).(e), Part I.D.5.b.(ii).(f), Part I.D.5.b.(ii).(g), and Part I.D.5.b.(ii).(h): (e) Procedure to develop and implement an educational program for project developers regarding designs to control water quality effects from stormwater, and a training program for plan review staff regarding stormwater standards, site design techniques and controls, including training regarding 	 EHS will participate and cooperate in local experts' combined efforts to refine and present stormwater quality educational training for project developers. UNM staff (e.g., PDC, FM, etc.), including plan reviewers, on construction project teams will receive such training. EHS in conjunction with FM will inspect campus stormwater management and control systems to assure long-term operation, 	 Provide a discussion of education and outreach activities geared toward LID implementation in the Annual Report. Provide a discussion of maintenance and 	EHS is developing guidance documents on stormwater improvements for project managers. As part of the preventive maintenance program, the UNM Facilities Management department inspects stormwater management and control systems to assure long-

CONSTRUCTION SITE STORMWAT			
Permit Activity	Proposed Plan	Measurable Goal	Status
 GI/LID/Sustainability practices. Training may be developed independently or obtained from outside resources, i.e. federal, state, or local experts; (f) Procedures for site inspection and enforcement to ensure proper long-term operation, maintenance, and repair of stormwater management practices that are put into place as part of construction projects/activities. Procedure(s) shall include the requirement that as-built plans be submitted within ninety (90) days of completion of construction projects/activities that include controls designed to manage the stormwater associated with the completed site (post- construction stormwater management). Procedure(s) may include the use of dedicated funds or escrow accounts for development projects or the adoption by the permittee of all privately owned control measures. This may also include the development of maintenance contracts between the owner of the control measure and the permittee. The maintenance contract shall include verification of maintenance practices by the owner, allows the MS4 owner/operator to inspect the maintenance practices, and perform maintenance if inspections indicate neglect by the owner; (g) Procedures to control the discharge of pollutants related to commercial 	 maintenance and repair of stormwater management and control systems. UNM contractors are already required to submit project as built plans to PDC upon completion. These plans are stored in PDC's database. The number of such inspections will be mentioned in UNM's Annual Reports to EPA. UNM's Integrated Pest Management (IPM) manual applies to UNM campus wide. FM will review and revise the IPM, provide more IPM related training to employees, seek less toxic and equally less expensive new approaches. EHS will work with FM to review their protocols for applying herbicides and fertilizers and will work to monitor the use of pesticides, herbicides, and fertilizers. 	inspections of stormwater control features in the Annual Report.	term operation, maintenance, and repair. EHS has developed inspection checklists used to inspect campus stormwater management and control systems to assure long-term operation, maintenance, and repair of stormwater management and control systems. UNM Golf Course contractors and FM Grounds and landscaping staff engaged in IPM activities are required to maintain licenses. As part of the licensing process, they receive annual training on IPM. They are also required by the New Mexico Department of Agriculture to maintain detailed logs of herbicide and fertilizer application.

CONSTRUCTION SITE STORMWATER RUNOFF CONTROLS			
Permit Activity	Proposed Plan	Measurable Goal	Status
 application and distribution of pesticides, herbicides, and fertilizers where permittee(s) hold jurisdiction over lands not directly owned by that entity (e.g., incorporated city). The procedures must ensure that herbicides and pesticides applicators doing business within the permittee's jurisdiction have been properly trained and certified, are encouraged to use the least toxic products, and control use and application rates according to the applicable requirements; and (h) Procedure or system to review and update, as necessary, the existing program to ensure that stormwater controls or management practices for 			
new development and redevelopment projects/activities continue to meet the requirements and objectives of the permit.			
 2.6. Coordinate internally with all departments and boards with jurisdiction over the planning, review, permitting, or approval of public and private construction projects/activities within the permit area as required in Part I.D.5.b.(iii) (iii) The permittee must coordinate with all departments and boards with jurisdiction over the planning, review, permitting, or approval of public and private new development and redevelopment projects/activities within 	• EHS will work with its sister departments (FM, PDC and Parking and Transportation Services etc.) to develop and adopt design standards, policy and enforcement mechanisms for requiring on-site management of 90 th percentile (0.44-inch) storm events discharge volume associated with new development sites and 80th percentile storm event discharge volume associated with redevelopment sites. This will be done by December 2015.	• A discussion on UNM's progress in developing and adopting such design standards, policy, and enforcement mechanisms will be included in the annual report.	The EHS Design guidelines refer to the City of Albuquerque Development Process Manual specifications for stormwater discharge from construction sites. EHS continues to coordinate with PDC and FM (the departments with jurisdiction at UNM) to ensure development

Permit ActivityProposed PlanMeasurable GoalStatusthe permit area to ensure the hydrology associated with new development and redevelopment sites minie to the extent practicable the pre-development hydrology of the previously undeveloped site, except in instances where the pre- development hydrology requirement combinets with applicable exporting additional consistent with any limitations on that capture) which under undeveloped natural conditions would be expected to infiltration exportsmit one site and permit does not prevent permit does not prevent plans, subdivision ordinances, general land use plan, zoning code, transportation ordinances, sub ansister plans, subdivision ordinances, sub ansister plans, subdivision ordinances, sub ansister plans, subdivision ordinances, sub ansister a plans, subdivision ordinances, sub ansister identify impediments for the incorporation of GI/LID approaches including infiltration reckarge sub and ther applicable regulations, for impediments to the use of GI/LID/Sustainable practices: incorporation of GI/LID approaches incorporation cher and previde hydrologis and ther applicable regulations, for impediments to the use of GI/LID approaches incorporation of GI/LID approaches incorporation cher and previde hydrologis and anagement to advert hydrologis and anagement to advert hydrologis and	CONSTRUCTION SITE STORMWAT	ER RUNOFF CONTROLS		
associated with new development and redevelopment sites mimic to the extent practicable the pre-development hydrology of the previously undeveloped site, except in instances where the pre- development hydrology requirement comflicts with any limitations on that capture) which any limitations on that capture) which under undeveloped natural conditions would be expected to infiftrate or exportangeing and controls for flood control purposes.) Planning documents include, but are not limited to: comprehensive or master plans, subdivision ordinances, general land use plan, south as sector plan, site area plans, such as sector plan, site area plans, such site rundified development rundifients to the use of GI/LID/Sustainable practices: incorporation of GI/LID approaches incorporation of GI/LID			Measurable Goal	Status
redevelopment sites mimic to the extent practicable the pre-development hydrology of the previously undeveloped site, except in instances where the pre- development hydrology requirement conflicts with applicable water rights appropriation requirements. For purposes of this permit, pre-development hydrology shall be met by capturing the 90th percentite storm event runoff (consistent with any limitations on that capture) which under undeveloped right and undeveloped infiltrate or evapotranspirate on-site and result in liftle, if any, off-site runoff. (Note: This permit does not prevent permittees from requiring additional controls for flood control purposes.) Planning documents include, but are not limited to: comprehensive or master plans, subdivision ordinances, general land use plan, zoning code, transportation master plan, site area plans, such as sector plan, site area plans, such as sector plan, site area plans, such as sector plan, site area plans, orridor plans, or unified development ordinances, planning codes, ordinances, planning codes, ordinances, planning to des, ordinances, planning to des ord rapplicable regulations, for impediments to the use of GUI.ID/Sustainable practices: incorporation of GUI.ID approaches including infiltration, recharge, water incorporation of GUI.ID approaches incorporation of GUI.ID approaches incorporation of	the permit area to ensure the hydrology			complies with the MS4
practicable the pre-development hydrology of the previously undeveloped site, except in instances where the pre- development hydrology requirement. conflicts with applicable water rights appropriation requirements. For purposes of this permit, pre-development hydrology shall be met by capturing the 90th percentile storm event runoff (consistent with any limitations on that capture) which under undeveloped natural conditions would be expected to infiltrate or evapotranspirate on-site and result in little, if any, off-site runoff. (Note: This permit does not prevent permittees from requiring additional controls for flood control purposes.) Planning documents include, but are not limited to: comprehensive or master plans, suchvision ordinances, general land use plan, zoning code, transportation master plan, specific area plans, such as sector plan, site area plans, such as sector plan, site area plans, corridor plans, or unified development ordinances. 27. As required in Part LD.S.b.(iv), the permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the identify impediments for the incorporation of GI/LID Approaches incorporation of GI/LID Approaches incorpo				permit.
hydrology of the previously undeveloped site, except in instances where the pre- development hydrology requirement conflicts with applicable water rights appropriation requirements. For purposes of this permit, pre-development hydrology shall be met by capturing the 90th percentile storm event runoff (consistent with any limitations on that capture) which under undeveloped antural conditions would be expected to infiltrate or evapotranspirate on-site and result in litle, if any, off-site runoff. (Note: This permit does not prevent permittees from requiring additional controls for flood control purposes.) Planning documents include, but are not limited to: comprehensive or master plans, sourido rplans, or unified development ordinances, general land use plan, zoning code, transportation master plans, specific area plans, such as sector plan, site area plans, corrido rplans, or unified development ordinances. 2.7. As required in Part LD.5.b.(iv), the permittee must assess all existing documents and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: incorporation of GI/LID approaches including infiltration, recharge, water existing codes, ordinances, planning twitting projects. there porting period, twitting hydraware the preving the projects during the reporting period, the reporting period.				
site, except in instances where the pre- development hydrology requirement. conflicts with applicable water rights appropriation requirements. For purposes of this permit, pre-development hydrology shall be met by capturing the 90th percentile storm event runoff (consistent with any limitations on that capture) which under undeveloped natural conditions would be expected to infiltrate or evaportanspirate on-site and result in little, if any, off-site runoff. (Note: This permit does not prevent permittees from requiring additional controls for fload control purposes.) Planning documents include, but are not limited to: comprehensive or master plans, subdivision ordinances, general land use plan, zoning code, transportation master plan, specific area plans, coridor plans, see all existing ode, ordinances, lanning documents and other applicable regulations, for impediments to the use of GUI.ID/Sustainable practices: including infiltration, recharge, water harvesting, habitat improvement existing codes, ordinances, planning documents including infiltration, recharge, water harvesting, habitat improvement existing codes, ordinances, planning documents including infiltration, recharge, water harvesting, habitat improvement existing codes, ordinances, planning documents including infiltration, recharge, water harvesting, habitat improvement development of the new infibule development of the reprilee must assess all existing regulations, for impediments to the use of GUI.ID/Sustainable practices: including infiltration, recharge, water harvesting, habitat improvement development of the new infibule encounter of the new infibule	practicable the pre-development			
development hydrology requirement conflicts with applicable water rights appropriation requirements. For purposes of this permit, pre-development hydrology shall be met by capturing the 90th percentile storm event nunoff (consistent with any limitations on that capture) which under undeveloped natural conditions would be expected to infiltrate or evapotranspirate on-site and result in little, if any, off-site runoff. (Note: This permit does not prevent permittees from requiring additional controls for flood control purposes.) Planning documents include, but are not limited to: comprehensive or master plans, subdivision ordinances, general land use plan, zoning code, transportation master plan, specific area plans, subdivision ordinances. 27. As requiring and the range plans, subdivision ordinances, second land docter departments to the use of GU/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GU/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GU/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents must assess all existing codes, ordinances, planning documents include, inflitration, recharge, water harvesting, habitat improvement description of the regulation of the regulation of GU/LID approaches incorporation of GU/LID approaches incorporatio				
conflicts with applicable water rights approposes of this permit, pre-development hydrology shall be met by capturing the 90th percentile storm event runoff (consistent with any limitations on that capture) which under undeveloped natural conditions would be expected to infiltrate or evapotranspirate on-site and result in little, if any, off-site runoff. (Note: This permit does not prevent permittees from requiring additional controls for flood control purposes.) Planning douements include, but are not limited to: comprehensive or master plans, subdivision ordinances, general land use plan, zoning code, transportation master plan, specific area plans, such as sector plan, site area plans, coridor plans, or unified development ordinances. 2.7. As required in Part 1.D.5.b.(iv), the permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GU/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GU/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GU/LID/Sustainable practices: (iv) The permittee must assess all existing existing codes, ordinances, planning documents including infiltration, recharge, water harvesting, habitat improvement harvesting, habitat improvement harvesting, habitat improvement harvesting, habitat improvement harvesting, habitat improvement				
appropriation requirements. For purposes of this permit, pre-development hydrology shall be met by capturing the 90th percentile storm event runoff (consistent with any limitations on that capture) which under undeveloped natural conditions would be expected to infiltrate or evapotranspirate on-site and result in little, if any, off-site runoff. (Note: This permit does not prevent permittees from requiring additional controls for flood control purposes.) Planning documents include, but are not limited to: comprehensive or master plans, subdivision ordinances, general land use plan, specific area plans, corridor plans, or unified development ordinances, neural planning and design procedures to identify impediments for the incorporation of GI/LID sproaches incoluting infiltration, recharge, water existing codes, ordinances, planning documents assess all existing codes, ordinances, planning harvesting, habitat improvement existing codes, ordinances, planning harvesting, habitat improvement harvesting, habitat impr				
purposes of this permit, pre-development hydrology shall be met by capturing the 90th percentile storm event runoff (consistent with any limitations on that capture) which under undeveloped natural conditions would be expected to infiltrate or evapotranspirate on-site and result in little, if any, off-site runoff. (Note: This permit does not prevent permittes from requiring additional controls for flood control purposes.) Planning documents include, but are not limited to: comprehensive or master plans, subdivision ordinances, general land use plan, zoning code, transportation master plan, specific area plans, corridor plan, so, specific area plans, corridor plan, so, specific area plans, cordior planning documents and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents and other applicable incomporation of GI/LID approaches incomporation of GI/LID approaches incomporation of the dipprovement harvesting, habitat improvement is the the incomporation for the totic harvesting, habitat improvement is the totic mater is the totic multiple projects during the exporting projects. EHS has reviewed multiple projects during the reporting projects.				
hydrology shall be met by capturing the 90th percentile storm event runoff (consistent with any limitations on that capture) which under undeveloped natural conditions would be expected to infiltrate or evapotranspirate on-site and result in little, if any, off-site runoff. (Note: This permit does not prevent permittes: from requiring additional controls for flood control purposes.) Planning documents include, but are not limited to: comprehensive or master plans, subdivision ordinances, general land use plan, zoning code. transportation master plan, specific area plans, corridor plans, or unified development ordinances. 27. As required in Part LD.5.b.(iv), the permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning harvesting, habitat improvement to clouding infiltration, recharge, water existing codes, ordinances, planning harvesting, habitat improvement to use of a constrained the merviewed multiple projects. EHS has reviewed multiple projects during the reporting period,	appropriation requirements. For			
90th percentile storm event runoff (consistent with any limitations on that capture) which under undeveloped natural conditions would be expected to infiltrate or evapotranspirate on-site and result in little, if any, off-site runoff. (Note: This permit does not prevent permittees from requiring additional controls for flood control purposes.) Planning documents include, but are not limited to: comprehensive or master plans, subdivision ordinances, general land use plan, zoning code, transportation master plan, specific area plans, corridor plans, or unified development ordinances. EHS will work with PDC, FM and other departments to assess facility planning and design procedures to identify impediments for the incroporation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement to use of GI/LID/Sustainable practices: The permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: The permittee must assess all existing codes, ordinances, planning to use of advencement planking including infiltration, recharge, water harvesting, habitat improvement The permittee must assess all existing codes, ordinances, planning The permittee must assess all The private must assess all The permittee must assess all The private must assess all The permittee must assess all The private must assess The private must assess all<!--</td--><td></td><td></td><td></td><td></td>				
 (consistent with any limitations on that capture) which under undeveloped natural conditions would be expected to infiltrate or evapotranspirate on-site and result in little, if any, off-site runoff. (Note: This permit does not prevent permittees from requiring additional controls for flood control purposes.) Planning documents include, but are not limited to: comprehensive or master plans, suchais sector plan, site area plans, such as sector plan, site area plans, such of plans, or unified development ordinances. 2.7. As required in Part LD.5.b.(iv), the permittee must assess all existing codes, ordinances, planning dotter applicable regulations, for impediments to the use of GI/LID/Sustainable practices: incorporation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement harvesting, habitat improvement 	hydrology shall be met by capturing the			
 capture) which under undeveloped natural conditions would be expected to infiltrate or evapotranspirate on-site and result in little, if any, off-site runoff. (Note: This permit does not prevent permittees from requiring additional controls for flod control purposes.) Planning documents include, but are not limited to: comprehensive or master plans, such as sector plan, specific area plans, such as sector plan, site area plans, control or flor point or dinances. 2.7. As required in Part LD-S.b.(iv), the permittee must assess all existing codes, ordinances, planning dotter applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning harvesting, habitat improvement harvesting, habitat improvement (iv) The permittee must assess all existing codes, ordinances, planning harvesting, habitat improvement harvesting, habitat improvement 	90th percentile storm event runoff			
natural conditions would be expected to infiltrate or evapotranspirate on-site and result in little, if any, off-site runoff. (Note: This permit does not prevent permittees from requiring additional controls for flood control purposes.) Planning documents include, but are not limited to: comprehensive or master plans, subdivision ordinances, general land use plan, zoning code, transportation master plan, specific area plans, such as sector plan, site area plans, such as sector plan, site area plans, corridor plans, or unified development ordinances. 2.7. As required in Part LD.5.b.(iv), the permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning design procedures to identify impediments for the incorporation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement development and other applicable regulations, for impediments for the incorporation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement development and interporting period,	(consistent with any limitations on that			
 infiltrate or evapotranspirate on-site and result in little, if any, off-site runoff. (Note: This permit does not prevent permittees from requiring additional controls for flood control purposes.) Planning documents include, but are not limited to: comprehensive or master plans, subdivision ordinances, general land use plan, zoning code, transportation master plans, specific area plans, such as sector plan, site area plans, corridor plans, or unified development ordinances. 2.7. As required in Part LD.5.b.(iv), the permittee must assess all existing codes, ordinances, planning dotter departments to assess facility planning and design procedures to identify impediments for the incorporation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement 	capture) which under undeveloped			
result in little, if any, off-site runoff. (Note: This permit does not prevent permittees from requiring additional controls for flood control purposes.) Planning documents include, but are not limited to: comprehensive or master plans, subdivision ordinances, general land use plan, zoning code, transportation master plan, specific area plans, corridor plans, or unified development ordinances. 2.7. As required in Part I.D.S.b.(iv), the permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning termettee must assess all existing codes, ordinances, planning the report. Herefore the transportation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement the reporting period, the transportation the transportation the transportation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement the reporting period, the transportation the transportation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement the reporting period, the transportation the transport	natural conditions would be expected to			
(Note: This permit does not prevent permittees from requiring additional controls for flood control purposes.) Planning documents include, but are not limited to: comprehensive or master plans, subdivision ordinances, general land use plan, zoning code, transportation master plan, specific area plans, such as sector plan, site area plans, corridor plans, or unified development ordinances.• EHS will work with PDC, FM and other departments to assess facility planning and design procedures to identify impediments for the incorporation of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning decoments and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning decoments and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning decoments and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning decoment end other applicable regord in the annual report.• An update will be provided in the annual report.EHS continued to work with FM and PDC to discuss potential GI/LID features for current and upcoming projects. EHS has reviewed multiple projects during the reporting period, the reporting period,	infiltrate or evapotranspirate on-site and			
permittees from requiring additional controls for flood control purposes.) Planning documents include, but are not limited to: comprehensive or master plans, subdivision ordinances, general land use plan, zoning code, transportation master plan, specific area plans, corridor plan, or unified development ordinances. 2.7. As required in Part LD.5.b.(iv), the permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents and other applicable (b) the the incorporation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement harvesting, habita	result in little, if any, off-site runoff.			
 controls for flood control purposes.) Planning documents include, but are not limited to: comprehensive or master plans, subdivision ordinances, general land use plan, zoning code, transportation master plans, specific area plans, such as sector plan, site area plans, corridor plans, or unified development ordinances. 2.7. As required in Part LD.5.b.(iv), the permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the incorporation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement discusses to use of the vesting habitat improvement to the tereprint or earlies during the reporting period, 	(Note: This permit does not prevent			
Planning documents include, but are not limited to: comprehensive or master plans, subdivision ordinances, general land use plan, zoning code, transportation master plans, specific area plans, corridor plans, or unified development ordinances. EHS will work with PDC, FM and other departments to assess facility planning and design procedures to identify impediments for the incorporation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement An update will be provided in the annual report. EHS will work with PDC, FM and other departments to assess facility planning and design procedures to identify impediments for the incorporation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement 				
 limited to: comprehensive or master plans, subdivision ordinances, general land use plan, zoning code, transportation master plan, specific area plans, such as sector plan, site area plans, corridor plans, or unified development ordinances. 2.7. As required in Part LD.5.b.(iv), the permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning habitat improvement habitat improvement habitat improvement habitat improvement the permittee must assess all existing codes, ordinances, planning habitat improvement habitat improvement habitat improvement 	controls for flood control purposes.)			
plans, subdivision ordinances, general land use plan, zoning code, transportation master plan, specific area plans, such as sector plan, site area plans, corridor plans, or unified development ordinances<	Planning documents include, but are not			
land use plan, zoning code, transportation master plan, specific area plans, such as sector plan, site area plans, corridor plans, or unified development ordinancesEHS will work with PDC, FM and other departments to assess facility planning and design procedures to identify impediments for the incorporation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement-An update will be provided in the annual report.EHS continued to work with FM and PDC to discuss potential GI/LID features for current and upcoming projects. EHS has reviewed multiple projects during the reporting period,	limited to: comprehensive or master			
transportation master plan, specific area plans, such as sector plan, site area plans, corridor plans, or unified development ordinances.EHS will work with PDC, FM and other departments to assess facility planning and design procedures to identify impediments for the incorporation of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents and other applicable regulation including infiltration, recharge, water harvesting, habitat improvement document to add the applicable report.An update will be provided in the annual report.EHS continued to work with FM and PDC to discuss potential GI/LID features for current and upcoming projects. EHS has reviewed multiple projects during the reporting period,	plans, subdivision ordinances, general			
plans, such as sector plan, site area plans, corridor plans, or unified development ordinances.EHS will work with PDC, FM and other departments to assess facility planning and design procedures to identify impediments for the incorporation of GI/LID approachesAn update will be provided in the annual report.EHS continued to work with FM and PDC to discuss potential GI/LID features for current and upcoming projects. EHS has reviewed multiple projects during the reporting period,				
plans, corridor plans, or unified development ordinances.EHS will work with PDC, FM and other departments to assess facility planning and design procedures to identify impediments for the incorporation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement• An update will be provided in the annual report.EHS continued to work with FM and PDC to discuss potential GI/LID features for current and upcoming projects. EHS has reviewed multiple projects during the reporting period,	transportation master plan, specific area			
development ordinances.EHS will work with PDC, FM and other departments to assess facility planning and design procedures to identify impediments for the incorporation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement• An update will be provided in the annual report.EHS continued to work with FM and PDC to discuss potential GI/LID features for current and upcoming projects. EHS has reviewed multiple projects during the reporting period,	plans, such as sector plan, site area			
 2.7. As required in Part I.D.5.b.(iv), the permittee must assess all existing codes, ordinances, planning documents and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents and other applicable EHS will work with PDC, FM and other departments to assess facility planning and design procedures to identify impediments for the incorporation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement comments and other applicable Manupdate will be provided in the annual report. An update will be provided in the annual report. 	plans, corridor plans, or unified			
 EHS will work with PDC, FM and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning and design procedures to including infiltration, recharge, water harvesting, habitat improvement harvesting, habitat improvement and other applicable EHS will work with PDC, FM and other departments to assess facility planning and design procedures to identify impediments for the incorporation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement and other applicable. It is continued to work with PDC, FM and other applicable planning and design procedures to identify impediments for the incorporation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement and other applicable. It is continued to work with PDC, FM and other applicable provided in the annual report. 	development ordinances.			
 EHS will work with PDC, FM and other applicable regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning existing codes, ordinances, planning EHS will work with PDC, FM and other departments to assess facility planning and design procedures to identify impediments for the incorporation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement harvesting, habitat improvement existing codes, ordinances, planning EHS will work with PDC, FM and other applicable other departments to assess facility planning and design procedures to identify impediments for the incorporation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement harvesting, habitat improvement improvement including projects during the reporting period, 	2.7. As required in Part I.D.5.b.(iv),			EUS continued to work
codes, ordinances, planningother departments to assess facilitybe provided indocuments and other applicableplanning and design procedures tothe annualregulations, for impediments to theidentify impediments for thethe annualuse of GI/LID/Sustainable practices:including infiltration, recharge, waterthe assess all(iv) The permittee must assess allincluding infiltration, recharge, waterEHS has reviewedharvesting, habitat improvementharvesting, habitat improvementthe reporting period,	the permittee must assess all existing	• EHS will work with PDC, FM and	• An update will	
documents and other applicableplanning and design procedures tothe annualregulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents and other applicableplanning and design procedures to identify impediments for the incorporation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement multiple projects during the reporting period,features for current and upcoming projects. EHS has reviewed multiple projects during the reporting period,	codes, ordinances, planning	other departments to assess facility	be provided in	
regulations, for impediments to the use of GI/LID/Sustainable practices: (iv) The permittee must assess all existing codes, ordinances, planning documents on d other amplicableidentify impediments for the incorporation of GI/LID approaches including infiltration, recharge, water harvesting, habitat improvement multiple projects during the reporting period,report.reatures for current and upcoming projects. EHS has reviewed multiple projects during the reporting period,	documents and other applicable		1	
use of GI/LID/Sustainable practices:incorporation of GI/LID approachesupcoming projects.(iv) The permittee must assess allincluding infiltration, recharge, waterEHS has reviewedexisting codes, ordinances, planningharvesting, habitat improvementmultiple projects duringdocuments and other applicablemultiple projects duringthe reporting period,	regulations, for impediments to the		report.	
(iv) The permittee must assess all existing codes, ordinances, planning desuments and other amplicable including infiltration, recharge, water harvesting, habitat improvement the reporting period,	use of GI/LID/Sustainable practices:		-	
existing codes, ordinances, planning harvesting, habitat improvement the reporting period,	(iv) The permittee must assess all			
desymmetries and other annihischies	existing codes, ordinances, planning			
	documents and other applicable	and/or hydrological management to		incorporating infiltration

CONSTRUCTION SITE STORMWAT	ER RUNOFF CONTROLS		
Permit Activity	Proposed Plan	Measurable Goal	Status
regulations, for impediments to the use of GI/LID/Sustainable practices. The assessment shall include a list of the identified impediments, necessary regulation changes, and recommendations and proposed schedules to incorporate policies and standards to relevant documents and procedures to maximize infiltration, recharge, water harvesting, habitat improvement, and hydrological management of stormwater runoff as allowed under the applicable water rights appropriation requirements. The permittee must develop a report of the assessment findings, which is to be used to provide information to the permittee, of the regulation changes necessary to remove impediments and allow implementation of these practices.	improve post-construction stormwater quality.		and water harvesting into remodels and new construction.
2.8. As required in Part I.D.5.b.(iv), describe the plan to report the assessment findings on GI/LID/Sustainable practices	• Assessment findings will be tracked, recorded and reported in an annual report by March 20, 2017.		Assessment findings will continue to be reported in the annual reports.
 2.9. Estimation of the number of acres of IA and DCIA as required in Part I.D.5.b.(vi): (vi) The permittee must estimate the number of acres of impervious area (IA) and directly connected impervious area (DCIA). For the purpose of his part, IA includes conventional pavements, sidewalks, driveways, roadways, parking lots, and rooftops. DCIA is the portion of IA with a direct hydraulic connection to the permittee's MS4 or a waterbody 	• By June 20, 2017, EHS will calculate and update an estimate of acreage of impervious areas (IA) and directly connected impervious areas (DCIA). UNM may report the acreages of IA and DCIA in a tabular format to EPA and describe the methodology used to calculate the acreages.	• Estimation of campus IAs and DCIA removed or added in the Annual Report.	This process has been completed. There are 576.3 acres of impervious area and 681.7 acres of permeable area at UNM. The majority of UNM's impervious area has a direct hydraulic connection to the MS4 and can therefore be considered DCIA.

CONSTRUCTION SITE STORMWAT			
Permit Activity	Proposed Plan	Measurable Goal	Status
via continuous paved surfaces, gutters, pipes, and other impervious features. DCIA typically does not include isolated impervious areas with an indirect hydraulic connection to the MS4 (e.g., swale or detention basin) or that otherwise drain to a pervious area.			During the reporting period, the Elk Lodge was converted to a gravel parking area, constituting 4.75 acres of permeable surface. The assessment report is available upon request.
			EHS will continue to provide IA and DCIA estimates for upcoming projects.
2.10. Inventory and priority ranking as required in section in Part I.D.5.b.(vii): (vii) The permittee must develop an inventory and priority ranking of MS4- owned property and infrastructure (including public right-of-way) that may have the potential to be retrofitted with control measures designed to control the frequency, volume, and peak intensity of stormwater discharges to and from its MS4. In determining the potential for retrofitting, the permittee shall consider factors such as the complexity and cost of implementation, public safety, access for maintenance purposes, subsurface geology, depth to water table, proximity to aquifers and subsurface infrastructure including sanitary sewers and septic systems, and opportunities for public use and education under the applicable water right requirements and restrictions. In determining its priority ranking, the	• By June 20, 2018, EHS will complete an inventory and rank campus property and MS4 infrastructure that may have the potential to be retrofitted with control measures to improve stormwater quality. Factors such as implementation cost, public safety, maintenance access, geology, depth to groundwater/aquifer, proximity to other infrastructure (e.g., sanitary sewer & septic systems), opportunities for public use and education should be considered in the priority ranking of potential retrofit projects.	• An annual report on what retrofitting work has been done will be made beginning in the 2017 Annual Report to the EPA, and such reporting will continue in each subsequent Annual Report to the EPA.	This process is ongoing. An inventory of UNM's storm drain system is shown in UNM's Campus Utility Maps prepared by FM. In 2015 FM Engineering hired an engineering firm to do studies. The final reports titled: <u>University</u> of New Mexico <u>Drainage Study:</u> <u>Popejoy Hall and</u> <u>Woodward Lecture Hall</u> <u>Drainage issues</u> and <u>University of New</u> <u>Mexico Drainage Study:</u> <u>Science and math</u> <u>Learning Center Area</u> <u>Drainage issues</u> identify and recommend several LID/BMP options to reduce flow and improve

CONSTRUCTION SITE STORMWAT	ER RUNOFF CONTROLS		
Permit Activity	Proposed Plan	Measurable Goal	Status
permittee shall consider factors such as schedules for planned capital improvements to storm and sanitary sewer infrastructure and paving projects; current storm sewer level of service and control of discharges to impaired waters, streams, and critical receiving water (drinking water supply sources);			water quality. FM Grounds and Landscaping has also identified and retrofitted UNM storm drain inlets with smaller size grates to reduce the amount of debris flowing into the storm drains.
			UNM is also in the process of seeking further funding for studies on stormwater GI/LID issues.
 2.11. Incorporate watershed protection elements as required in Part I.D.5.b.(viii): (viii) The permittee must incorporate watershed protection elements into relevant policy and/or planning documents as they come up for regular review. If a relevant planning document is not scheduled for review during the term of this permit, the permittee must identify the elements that cannot be implemented until that document is revised, and provide to EPA and NMED a schedule for incorporation and implementation not to exceed five years from the effective date of this permit. As applicable to each permittee's MS4 jurisdiction, policy and/or planning documents must include the following: 	 By June 20, 2017 EHS will work to research and develop watershed protection measures and propose their incorporation into UNM policy and planning documents as they come up for review for renewal. Such policy and planning documents will include: A description of UNM's master planning and project planning procedures to control the discharge of pollutants into the MS4. Minimize the amount of impervious surfaces (roads, parking lots, roofs, etc.) within the campus by controlling the creation and expansion of such during development and redevelopment. Identify any environmentally or 	• All new proposed watershed protection measures will be discussed in the annual report.	UNM's written StormwaterOperations and MaintenancePlan describes UNM'sstormwater managementpractices that minimize waterquality impacts to streams.Using resources such as theengineering reports citedearlier in this report andEPA's Handbook forDeveloping Watershed Plansto Restore and Protect OurWaters and CommunitySolutions for StormwaterManagement: A Guide forVoluntary Long-TermPlanning, EHS has identifiedwatershed protectionmeasures that could beincorporated into UNM's

CONSTRUCTION SITE STORMWATER RUNOFF CONTROLS			
Permit Activity	Proposed Plan	Measurable Goal	Status
 the discharge of pollutants to and from the MS4. (b) Minimize the amount of impervious surfaces (roads, parking lots, roofs, etc.) within each watershed, by controlling the unnecessary creation, extension and widening of impervious parking lots, roads and associated development. The permittee may evaluate the need to add impervious surface on a case-by- case basis and seek to identify alternatives that will meet the need without creating the impervious surface. 	 provides water quality benefits or serve critical watershed functions. Requirements may be needed to protect such if there is a technical basis to justify the actual existence of any such areas on campus. Inviting stakeholder input may be required for identifying sensitive areas. No streams exist on campus. Should UNM acquire and develop stream-side property, then measures will be taken to disconnect direct discharge to the stream from impervious areas. 		FM engineering design guidelines in addition to the UNM 2040 master plan.
(c) Identify environmentally and ecologically sensitive areas that provide water quality benefits and serve critical watershed functions within the MS4 and ensure requirements to preserve, protect, create and/or restore these areas are developed and implemented during the plan and design phases of projects in these identified areas. These areas may include, but are not limited to critical watersheds, floodplains, and areas with endangered species concerns and historic properties. Stakeholders shall be consulted as appropriate.	 UNM will seek to avoid hydro- modification of arroyos caused by campus development, including roads, etc. UNM will develop and implement development policies to protect soils, prevent topsoil stripping and soil compaction. UNM will continue to incorporate watershed protection elements into relevant policy and/or planning documents as they come up for regular review. 		
(d) Implement stormwater management practices that minimize water quality impacts to streams, including disconnecting direct discharges to surface waters from impervious surfaces such as parking lots.			

CONSTRUCTION SITE STORMWATER RUNOFF CONTROLS			
Permit Activity	Proposed Plan	Measurable Goal	Status
(e) Implement stormwater management practices that protect and enhance groundwater recharge as allowed under the applicable water rights laws.			
(f) Seek to avoid or prevent hydromodification of streams and other water bodies caused by development, including roads, highways, and bridges.			
(g) Develop and implement policies to protect native soils, prevent topsoil stripping, and prevent compaction of soils.			
(h) The program must be specifically tailored to address local community needs (e.g. protection to drinking water sources, reduction of water quality impacts) and must be designed to attempt to maintain pre-development runoff conditions.			
2.12. Enhance the program to include program elements in Part I.D.5.b.(xi) and Part I.D.5.b.(xii): (xii) When choosing appropriate BMPs, the permittee may participate in locally- based watershed planning efforts, which attempt to involve a diverse group of stakeholders including interested citizens. When developing a program that is consistent with this measure's intent, the permittee may adopt a planning process that identifies the	• UNM will continue to participate in locally-based watershed planning efforts, such as the stormwater Technical Advisory Group (TAG) and the Middle Rio Grande Urban Waters Partnership and work to incorporate ideas from these efforts into its Stormwater management program.		During the reporting period, EHS participated in TAG meetings and discussions with the Compliance Monitoring Cooperative committee.
municipality's program goals (e.g., minimize water quality impacts resulting from post-construction runoff from new			

CONSTRUCTION SITE STORMWATER RUNOFF CONTROLS			
Permit Activity	Proposed Plan	Measurable Goal	Status
development and redevelopment),			
implementation strategies (e.g., adopt a combination of structural and/or non-			
structural BMPs), operation and			
maintenance policies and procedures,			
and enforcement procedures.			
2.13. Describe other proposed	 No additional activities are being proposed 	Additional proposed	No proposed activities were
activities to address the Post-	at this time. UNM will continue to explore	activities will be reported in	included in the annual report.
Construction Stormwater	additional activities to address the Post	the annual report.	
Management in	Construction Stormwater Management in		
New Development and Redevelopment	New Development and Redevelopment		
Measure:	Measure.		

POLLUTION PREVENTION/GOOD HOUSEKEEPING FOR MUNICIPAL OPERATIONS

 procedures for structural and non-structural stormwater controls to reduce floatable, trash, and other pollutants discharged from the MS4. (c) Controls for reducing or eliminating the discharge of pollutants from streets, roads, highways, municipal parking lots, maintenance and storage yards, fleet or maintenance shops with outdoor storage areas, salt/sand storage locations, snow disposal areas operated by the permittee, and waste transfer stations; (d) Procedures for properly disposing of waste removed from the separate storm sewers and areas listed in Part I.D.5.c.(i).(c) (such as dredge spoil, accumulated sediments, floatables, and other debris); and (e) Procedures to ensure that new flood management projects assess the impacts on water quality and examine existing projects for incorporating additional water quality protection devices or practices. Note: The permittee may use training materials that are available from EPA, NMED, Tribe, or other organizations. 	 scaping sweep and daily (M-F) litter pickup on campus. UNM maintains a Spill Prevention, Countermeasure and Control Plan (SPCCP) to address the risks from oil tanks larger than 55 gallons. UNM takes measures to insure that parties responsible for a spill on campus take reasonable steps to control and minimize threats to human health and the environment. Potential discharges will be controlled through implementation of spill prevention practices, self-inspections, and employee training. FM's O&M Program will also include measures to control the following stormwater pollutants: a) de-icing salts; b) roadway debris and roadside vegetation management practices; leaked automotive fluids in equipment maintenance yards; c) debris on hard-scaping (roads, etc.) that can be reduced by modifying street sweeping strategies; and d) targeting problem areas on campus that may have greater pollution potential. 		
 3.2. Enhance the program to include the elements in Part I.D.5.c.(ii): (ii) The Pollution Prevention/Good Housekeeping program must include the following elements: 	 (See Proposed Plan for Permit Activities listed in 3.1 above). In addition, UNM will do the following: UNM's O&M program will identify waste disposal standard operating procedures (SOPs), including SOPs 	• Submit annual progress updates in the Annual Report.	FM continued routine O&M operations for street sweeping, trash collections, recycling. Disposal of hazardous chemicals and used oils from maintenance shops were done

(a) Develop or update the existing list of all stormwater quality facilities by drainage basin, including location and description;

(b) Develop or modify existing operational manual for de-icing activities addressing alternate materials and methods to control impacts to stormwater quality;

(c) Develop or modify existing program to control pollution in stormwater runoff from equipment and vehicle maintenance yards and maintenance center operations located within the MS4;

(d) Develop or modify existing street sweeping program. Assess possible benefits from changing frequency or timing of sweeping activities or utilizing different equipment for sweeping activities;

(e) A description of procedures used by permittees to target roadway areas most likely to contribute pollutants to and from the MS4 (i.e., runoff discharges directly to sensitive receiving water, roadway receives majority of de-icing material, roadway receives excess litter, roadway receives greater loads of oil and grease);

(f) Develop or revise existing standard operating procedures for collection of used motor vehicle fluids (at a minimum oil and antifreeze) and toxics (including paint, solvents, fertilizers, pesticides, herbicides, and other hazardous materials) used in permittee operations or discarded in the MS4, for recycle, reuse, or proper disposal; for motor vehicle fluids, toxic paints, solvents, fertilizers, pesticides, herbicides and any other hazmat, by June 2017. This will include a list of opportunities for recycling substances. Also, standard operating procedures will address the removal of sediments, debris, floatables and litter including pet wastes.

• By June 20, 2017, UNM will re-assess existing flood control infrastructure for the potential to retro-fit it with additional water quality enhancement features.

• UNM's O&M Program maintains: a) an updated list of stormwater quality facilities by drainage basin, including location and description; b) a target number of 20 stormwater quality facilities shall be inspected once every 3 months by FM and cleaned if necessary. through EHS or other thirdparty vendors.

With the exception of a few small detention basins, UNM does not have flood control infrastructure. The flood control infrastructure is owned and operated by the AMAFCA.

No retrofit evaluations were conducted during this reporting period.

(g) Develop or revised existing standard		
operating procedures for the disposal of		
accumulated sediments, floatables, and		
other debris collected from the MS4 and		
during permittee operations to ensure		
proper disposal;		
(h) Develop or revised existing litter		
source control programs to include public		
awareness campaigns targeting the		
permittee audience; and		
(i) Develop or review and revise, as		
necessary, the criteria, procedures and		
schedule to evaluate existing flood control		
devices, structures and drainage ways to		
assess the potential of retrofitting to		
provide additional pollutant removal from		
stormwater. Implement routine review to		
ensure new and/or innovative practices are		
implemented where applicable.		
(j) Enhance inspection and maintenance		
programs by coordinating with		
maintenance personnel to ensure that a		
target number of structures per basin are		
inspected and maintained per quarter;		
(k) Enhance the existing program to		
control the discharge of floatables and		
trash from the MS4 by implementing		
source control of floatables in industrial		
and commercial areas;		
(l) Include in each annual report, a		
cumulative summary of retrofit evaluations		
conducted during the permit term on		
existing flood control devices, structures		
and drainage ways to benefit water quality.		

Update the SWMP to include a schedule		
(with priorities) for identified retrofit		
projects;		
1 5 /		
(m) Flood management projects: review		
and revise, as necessary, technical criteria		
guidance documents and program for the		
assessment of water quality impacts and		
incorporation of water quality controls into		
future flood control projects. The criteria		
guidance document must include the		
following elements:		
A. Describe how new flood control		
projects are assessed for water quality		
impacts.		
*		
B. Provide citations and descriptions of		
design standards that ensure water quality		
controls are incorporated in future flood		
control projects.		
control projects.		
C. Include method for permittees to		
update standards with new and/or		
innovative practices. D. Describe master		
planning and project planning procedures		
and design review procedures.		
(n) Develop procedures to control the		
discharge of pollutants related to the		
storage and application of pesticides,		
herbicides, and fertilizers applied, by the		
permittee's employees or contractors, to		
public right-of-ways, parks, and other		
municipal property. The permittee must		
provide an updated description of the data		
monitoring system for all permittee		
departments utilizing pesticides, herbicides		
and fertilizers.		
	I	

 3.3. Develop or update a list and a map of industrial facilities owned or operated by the permittee as required in Part I.D.5.c.(iii): (iii) Comply with the requirements included in the EPA Multi Sector General Permit (MSGP) to control runoff from industrial facilities (as defined in 40 CFR 122.26(b)(14)(i)-(ix) and (xi)) owned or operated by the permittees and ultimately discharge to the MS4. The permittees must develop or update: 	• UNM does not have operations within our campus jurisdiction that would normally be categorized as industrial or that have the potential for high-risk runoff.		
(a) A list of municipal/permittee operations impacted by this program,			
(b) A map showing the industrial facilities owned and operated by the MS4,			
(c) A list of the industrial facilities (other than large construction activities defined as industrial activity) that will be included in the industrial runoff control program by category and by basin. The list must include the permit authorization number or a MSGP NOI ID for each facility as applicable.			
3.4. Describe other proposed activities to address the Pollution Prevention/Good Housekeeping for Municipal/permittee Operations Measure:	• No additional activities are being proposed at this time. UNM will continue to explore additional activities to address the Pollution Prevention/Good Housekeeping for Municipal/permittee Operations Measure.	• Additional proposed activities will be reported in the annual report.	EHS is in the process of inventorying and updating signage on campus.

INDUSTRIAL AND HIGH RISK RUNOFF

Permit Activity	Proposed Plan	Measurable Goal
 4.1. Ordinance (or other control method) as required in Part I.D.5.d.(i): (i) The permittee must control through ordinance, permit, contract, order or similar means, the contribution of pollutants to the municipal storm sewer by stormwater discharges associated with industrial activity and the quality of stormwater discharged from sites of industrial activity as defined in 40 CFR 122.26(b)(14)(i)-(ix) and (xi). If no such industrial activities are in a permittees jurisdiction, that permittee may certify that this program element does not apply. 	• UNM does not have operations within our campus jurisdiction that would normally be categorized as industrial or that have the potential for high risk runoff.	
 4.2. Continue implementation and enforcement of the Industrial and High Risk Runoff program, assess the overall success of the program, and document both direct and indirect measurements of program effectiveness in the annual report as required in Part I.D.5.d.(ii): (ii) The permittee must continue implementation and enforcement of the Industrial and High Risk Runoff program, assess the overall success of the program, and document both direct and indirect measurements of program, and document both direct and indirect measurements of program effectiveness in the annual report. The program shall include: 	• UNM does not have operations within our campus jurisdiction that would normally be categorized as industrial or that have the potential for high-risk runoff.	
 (a) A description of a program to identify, monitor, and control pollutants in stormwater discharges to the MS4 from municipal landfills; other treatment, storage, or disposal facilities for municipal waste (e.g. transfer stations, incinerators, etc.); hazardous waste treatment, storage, disposal and recovery facilities; facilities that are subject to EPCRA Title III, Section 313; and any other industrial or commercial discharge the permittee(s) determines are contributing a substantial pollutant loading to the 		

MS4. (Note: If no such facilities are in a permittees	
jurisdiction, that permittee may certify that this	
program element does not apply.); and	
(b) Priorities and procedures for inspections and	
establishing and implementing control measures for	
such discharges.	
4.3. Meet the monitoring requirements in Part	
I.D.5.d.(iii):	
(iii) Permittees must comply with the monitoring	
requirements specified in Part III.A.4;	
4.4. Include requirements in Part I.D.5.d.(iv):	
4.4. Include requirements in Part I.D.S.d.(iv):	
(iv) The permittee must modify the following as	
necessary:	
(a) The list of the facilities included in the program,	
by category and basin;	
(b) Schedules and frequency of inspection for listed	
facilities. Facility inspections may be carried out in	
conjunction with other municipal programs (e.g.	
pretreatment inspections of industrial users, health	
inspections, fire inspections, etc.), but must include	
random inspections for facilities not normally visited	
by the municipality;	
by the manorpanty,	
(a) The mignitize for increasing and mean lines	
(c) The priorities for inspections and procedures used	
during inspections (e.g. inspection checklist, review	
for NPDES permit coverage; review of stormwater	
pollution prevention plan; etc.); and	
(d) Monitoring frequency, parameters and entity	
performing monitoring and analyses (MS4 permittees	
or subject facility). The monitoring program may	
include a waiver of monitoring for parameters at	
certification;	
individual facilities based on a "no-exposure" certification;	

4.5. Enhance the program to include requirements in Part I.D.5.d.(vii):	
(vii) The permittee may:	
(a) Use analytical monitoring data, on a parameter-by- parameter basis, that a facility has collected to comply with or apply for a State or NPDES discharge permit (other than this permit), so as to avoid unnecessary cost and duplication of effort;	
(b) Allow the facility to test only one (1) outfall and to report that the quantitative data also apply to the substantially identical outfalls if:	
A. A Type 1 or Type 2 industrial facility has two (2) or more outfalls with substantially identical effluents, and	
B. Demonstration by the facility that the stormwater outfalls are substantially identical, using one (1) or all of the following methods for such demonstration. The NPDES Stormwater Sampling Guidance Document (EPA 833-B-92-001), available on EPA's website at provides detailed guidance on each of the three options: (1) submission of a narrative description and a site map; (2) submission of matrices; or (3) submission of model matrices.	
(c) Accept a copy of a "no exposure" certification from a facility made to EPA under 40 CFR §122.26(g), in lieu of analytic monitoring.	
4.6. Describe other proposed activities to address the Industrial and High Risk Runoff Measure:	

ILLICIT DISCHARGES AND IMPROPER DISPOSAL

Permit Activity	Proposed Plan	Measurable Goal	Status
 5.1. Mapping as required in Part I.D.5.e.(i)(a); (i) The permittee shall develop, revise, implement, and enforce a program to detect and eliminate illicit discharges (as defined at 40 CFR 122.26(b)(2)) entering the MS4. Permittees previously covered under NMS000101 or NMR040000 must continue existing programs while updating those programs, as necessary, to comply with the requirements of this permit. The permittee must: (a) Develop, if not already completed, a storm sewer system map, showing the names and locations of all outfalls as well as the names and locations of all waters of the United States that receive discharges from those outfalls. Identify all discharges points into major drainage channels draining more than twenty (20) percent of the MS4 area; 	 (see Proposed Plan listed for permit Activity 5.2 below) UNM completed a campus utility map in 2013, which includes its storm sever map. UNM will continue to revise and update its storm sewer system map as necessary. 	Updates to the map will be reported in the annual report	UNM continued to implement its activities to detect and eliminate illicit discharges and training for staff, informing them how to detect and report illicit discharges. UNM does not have what would be considered outfalls as defined in Part VII of the permit. UNM has identified discharge points into major drainage channels. In 2021 EHS began an update to campus utility maps with photos of all storm sewers. New data includes GIS location of storm sewers supplied by the Earth Data Analysis Center
 5.2. Ordinance (or other control method) as required in Part I.D.5.e.(i)(b): (b) To the extent allowable under State, Tribal or local law, effectively prohibit, through ordinance or other regulatory mechanism, non-stormwater discharges into the MS4, and implement appropriate enforcement procedures and actions; 	• To the extent possible, EHS will work with other departments to develop mechanisms to control non-stormwater discharges into the MS4, and implement appropriate enforcement procedures and actions.		UNM's Construction Safety Manual and the EHS design guidelines and contractor requirements prohibit non- stormwater discharges into the MS4. UNM has implemented an IDDE program that regulates non- stormwater discharges into the MS4. UNM does not have formal regulatory or enforcement power but can utilize contractual and employee disciplinary

 5.3. Develop and implement a IDDE plan as required in Part I.D.5.e.(i)(c): (c) Develop and implement a plan to detect and address non-stormwater discharges, including illegal dumpling, to 	• UNM continues to implement efforts to detect and eliminate illicit discharges and improper disposal that may impact the quality of stormwater discharged from the campus. IDDE efforts at	 EHS will develop and implement an IDDE program. If the systematic IDDE 	mechanisms to discourage non-stormwater discharges from contractors and employees, respectively. A third-party contractor developed an IDDE plan on September 13, 2017. IDDE inspections were conducted at facilities identified as a
the MS4. The permittee must include the following elements in the plan:	UNM have historically identified and eliminated at least one non- stormwater discharge to our MS4.	process identifies a significant illicit discharge or improper	potential source for illicit discharges.
A. Procedures for locating priority areas likely to have illicit discharges including field test for selected pollutant indicators (ammonia, boron, chlorine, color, conductivity, detergents, E. coli,	EHS Department investigates IDDE problems within 48-hours of being reported. UNM then eliminates illicit discharges or improper disposal on campus	disposal on campus, then that finding and a brief explanation of any potential hazard will be posted on an EHS	During the reporting period, EHS began work on a survey of all storm drains within our jurisdiction.
enterococci, total coliform, fluoride, hardness, pH, potassium, conductivity, surfactants), and visually screening outfalls during dry weather;	within 30 days. If more time is needed then EHS Department develops an elimination schedule within six months.	 website page to inform any interested members of the campus or local communities. EHS will 	Additionally, all reports of illicit discharges are investigated, and a written report is issued to the appropriate department for
B. Procedures for enforcement, including enforcement escalation procedures for recalcitrant or repeat offenders;	• In addition, any newly discovered non-stormwater discharges will be assessed for their potential impact to the Rio Grande. EHS	incorporate that finding into stormwater quality training for the	correction. If the source of an illicit discharge is outside the jurisdiction of UNM, it is referred to the appropriate
C. Procedures for removing the source of the discharge;	will review compliance records to check for similar incidents and will prioritize preventing repeat	associated UNM staff that can best control the	authority, i.e., The City of Albuquerque.
D. Procedures for program evaluation and assessment; and	issues by increased awareness. EHS will manage UNM's IDDE Program and maintain maps	problem.IDDE screening and	
E. Procedures for coordination with adjacent municipalities and/or state, tribal, or federal regulatory agencies to address situations where investigations indicate	 EHS will check both wet and dry	inspections will be conducted at the frequency outlined in UNM's written IDDE	
the illicit discharge originates outside the MS4 jurisdiction.	stormwater discharges. Initial assessments of stormwater quality	program and incorporated	

	 will occur by visual and olfactory methods. If suspicious water quality conditions are encountered visually, then water quality samples may be tested with field instrumentation, e.g., conductivity, pH, temperature and perhaps dissolved oxygen or turbidity. If visual and field instrumentation assessment is unsatisfactory and other contamination is suspected (e.g., heavier than normal oil sheen), then grab samples may be collected for potentially applicable lab analysis by EPA methods, e.g., TPH, BTEX, E. Coli, nitrates/nitrite, etc. If unusual levels of water quality contaminants are observed, UNM will analyze the above information to try to track back to the source on campus or where up-gradient contamination enters campus. UNM will notify up-gradient MS4 entities if we encounter contamination from their jurisdiction entering campus. 	by reference into this SWMP.	
 5.4. Develop an education program as required in Part I.D.5.e.(i)(d): (d) Develop an education program to promote, publicize, and facilitate public reporting of illicit connections or 	 By June 20, 2016, EHS will include in its education program, information to promote and facilitate anonymous reporting of illicit connections or 		A written education program has been completed and is incorporated by reference into this SWMP. Copies are available upon request.
discharges, and distribution of outreach materials. The permittee shall inform	discharges by the campus community.		a anno a de a controla con

UNM Stormwater Management Program

 public employees, businesses and the general public of hazards associated with illegal discharges and improper disposal of waste. 5.5. Establish a hotline as required in Part I.D.5.e.(i)(e): (e) Establish a hotline to address complaints from the public. 	• Complaints from the public can be directed to EHS, which will conduct an investigation or notify the appropriate parties.	• Complaints from the public will be tracked, recorded, and reported.	Appropriate contact information is available on the EHS website, including a 24/7 pager number and an online system to submit work order requests. These resources are outlined in the 2017 IDDE plan. EHS has a 24/7 Duty Officer program where complaints can be reported.
 5.6. Investigate suspected significant/severe illicit discharges as required in Part I.D.5.e.(i)(f); (f) Investigate suspected significant/severe illicit discharges within forty-eight (48) hours of detection and all other discharges as soon as practicable; elimination of such discharges as expeditiously as possible; and, requirement of immediate cessation of illicit discharges upon confirmation of responsible parties. 	• EHS will investigate all suspected significant/severe illicit discharges within forty-eight (48) hours of detection and all other discharges as soon as practicable; eliminate such discharges as expeditiously as possible; and, require immediate cessation of illicit discharges upon confirmation of responsible parties.	• An update will be provided in the annual report.	A review of the investigation process was completed as part of the updates to the IDDE plan and is included in the IDDE plan. No incidents were noted and investigated during the reporting period.
 5.7. Review complaint records and develop a targeted source reduction program as required in Part I.D.5.e.(i)(g): (g) Review complaint records for the last permit term and develop a targeted source reduction program for those illicit discharge/improper disposal incidents that have occurred more than twice in two (2) or more years from different locations. (Applicable only to class A and B permittees) 	• EHS will maintain a log of complaint records from the last permit term and target source reduction efforts to repeat discharge incidents.	• An update will be provided in the annual report.	No incidents were reported to EHS during the time period, and none were repeat incidents.
5.8. Screening of system as required in Part I.D.5.e.(iii) as follows:			During the reporting period, EHS began work on a survey

 (iii) The permittee must screen the entire jurisdiction at least once every five (5) years and high priority areas at least once every year. High priority areas include any area where there is ongoing evidence of illicit discharges or dumping, or where there are citizen complaints on more than five (5) separate events within twelve (12) months. The permittee must: (a) Include in its SWMP document a description of the means, methods, quality assurance and controls protocols, and schedule for successfully implementing the required screening, field monitoring, laboratory analysis, investigations, and analysis evaluation of data collected. (b) Comply with the dry weather screening program established in Table 6 and the monitoring requirements specified in Part III.A.2. (c) If applicable, implement the priority ranking system develop in previous permit term. 	• The screening will occur as part of the IDDE program by EHS. Screening will be done according to the schedule in the permit.	 An update will be provided in the annual report. 	of all storm drains within our jurisdiction.
 5.9. Develop, update, and implement a Waste Collection Program as required in Part I.D.5.e.(iv): (iv) Waste Collection Programs: The permittee must develop, update, and implement programs to collect used motor vehicle fluids (at a minimum, oil and antifreeze) for recycle, reuse, or proper disposal, and to collect household hazardous waste materials (including paint, solvents, fertilizers, pesticides, herbicides, and other hazardous materials) 	• FM's O&M program will identify waste disposal standard operating procedures (SOPs), including SOPs for motor vehicle fluids, toxic paints, solvents, fertilizers, pesticides, herbicides and any other hazmat. This will include a list of opportunities for recycling substances. Also standard operating procedures will address the removal of sediments, debris,	• The annual report will include a discussion on any updates to an existing FM O&M program and SOPs or the development of new programs and SOPs.	UNM's Stormwater O&M Program contains a description of waste management operations. FM continued to operate a waste collection program that includes recycling. EHS continued to operate its hazardous waste collection and disposal program across campus.

 for recycle, reuse, or proper disposal. Where available, collection programs operated by third parties may be a component of the programs. Permittees shall enhance these programs by establishing the following elements as a goal in the SWMP: A. Increasing the frequency of the collection days hosted; B. Expanding the program to include commercial fats, oils and greases; and C. Coordinating program efforts between applicable permittee departments. 	floatables and litter including pet wastes. This will be completed by June 20, 2017.		
 applicable permittee departments. 5.10. Develop, update and implement a Spill Prevention and Response program to prevent, contain, and respond to spills that may discharge into the MS4 as required in Part I.D.5.e.(v): (v) Spill Prevention and Response. The permittee must develop, update and implement a program to prevent, contain, and respond to spills that may discharge into the MS4. The permittees must continue existing programs while updating those programs, as necessary, to comply with the requirements of this permit. The Spill Prevention and Response program shall include: (a) Where discharge of material resulting from a spill is necessary to prevent loss of life, personal injury, or severe property damage, the permittee(s) shall take, or insure the party responsible for the spill takes, all reasonable steps to control or 	• UNM's EHS department has developed and regularly updates spill prevention and response programs, and has staff trained to respond to chemical spills. EHS also has a 27/4 Duty Officer pager number where all spills are reported. A complete review of these programs will be completed by June 20, 2017.	• Responses to spills that have the potential to impact water quality will be reported in the annual report.	EHS maintained a 24/7 spill response team and an on-call spill response contractor. EHS also maintained the 24/7 Duty Officer program through which spills and other emergencies can be reported to EHS personnel. UNM followed its SPCC Plan during the reporting period. The plan is available upon request. There were no updates to the spill prevention and response program during the reporting period. During the reporting period, there was no response to spills that have the potential to impact water quality.

• EHS will look at the different subbasins and where feasible, divide them into different assessment areas. These assessment areas may be ranked in order of priority for screening purposes.	• An update on progress will be included in the annual report.	UNM's IDDE plan has identified locations throughout campus where screening for illicit discharges will take place. EHS began reconnaissance of all storm drains on the UNM campus along with GPS mapping locations.
	subbasins and where feasible, divide them into different assessment areas. These assessment areas may be ranked in order of priority for screening	subbasins and where feasible, divide them into different assessment areas. These assessment areas may be ranked in order of priority for screeningwill be included in the annual report.

would provide information on more than one jurisdiction); and			
(e) After screening a non-high priority area once, adopt an "in response to complaints only" IDDE for that area provided there are citizen complaints on no more than two (2) separate events within a twelve (12) month period.			
(f) Enhance the program to utilize procedures and methodologies consistent with those described in "Illicit Discharge Detection and Elimination, A Guidance Manual for Program Development and Technical Assessments."			
5.12. Describe other proposed activities to address the Illicit Discharges and Improper Disposal Measure:	 No additional activities are being proposed at this time. UNM will continue to explore additional activities to address the Illicit Discharges and Improper Disposal Measure. 	• Additional proposed activities will be reported in the annual report.	

CONTROL OF FLOATABLES DISCHARGES

Permit Activity	Proposed Plan	Measurable Goal	Status
6.1. Develop a schedule to implement the	• UNM's approach is to control floatables at the	To implement a	UNM grounds and
program as required in Part I.D.5.f.(i)(a):	source. UNM has a robust trash collection system,	schedule for	landscaping personnel
(i) The permittee must develop, update, and	with a dense network of trash collection stations	implementation of	continued
implement a program to address and control	across campus. UNM may have the most intensive	controls of floatables	implementing
floatables in discharges into the MS4. The	litter removal and street and sidewalk sweeping	in discharges into the	cleaning and
floatables control program shall include	program in the Albuquerque metro area that	MS4	maintenance on
source controls and, where necessary,	removes floatables from the campus grounds		stormwater inlets that
structural controls. Permittees previously	before they can come into contact with stormwater.	Include a discussion	trap floatables and
covered under NMS000101 or NMR040000	These activities are continuous.	of volume and type of	other debris. FM has
must continue existing programs while		trash removed in	identified a list of
updating those programs, as necessary, to	• Furthermore, UNM has installed grates in	Annual Reports.	storm drain inlets that
comply with the requirements of this permit.	stormwater inlets across campus to control		are cleaned at least
The following elements must be included in	floatables discharge.		quarterly. FM does
the program:			street sweeping every
	• PDD will continue to track and report the		day, and each UNM
(a) Develop a schedule for implementation of	estimated volume of floatables and trash removed		street is swept on
the program to control floatables in	from our control facilities. Beginning in June 2017,		average twice a week.
discharges into the MS4 (Note: AMAFCA	FM will start characterizing the types of floatables		The frequency of
and the City of Albuquerque should update	removed from control facilities.		sweeping reduces in
the schedule according to the findings of the			the winter months.
2005 AMAFCA/COA Floatable and Gross			The amount of debris
Pollutant Study and other studies); and			collected from street
			sweeping is still to be
			determined.

WASTE COLLECTION PROGRAMS

Permit Activity	Proposed Plan	Measurable Goal	
	 UNM carefully collects and disposes of all wastes that could be hazardous to stormwater quality. For instance, the EHS Department picks up and properly disposes of UNM's hazardous wastes in compliance with RCRA requirements. EHS, FM and other UNM departments properly manage and dispose of regulated universal wastes and other special wastes. UNM policy UBPP 7780 forbids automotive maintenance activities on campus outside of the fleet and equipment maintenance operations at the FM Automotive Center. UNM is expanding its waste collection program to include fats, oils and greases. UNM continues to coordinate waste collection efforts amongst departments. 		
 6.2. Describe the plan to estimate the annual volume of floatables and trash removed from each control facility and characterize the floatable type as required in Part I.D.5.f.(i)(b): (b) Estimate the annual volume of floatables and trash removed from each control facility and characterize the floatable type. 	• UNM does not own or operate any major stormwater quality control facilities. FM recycling will continue to track and report the estimated volume of trash and recyclable materials collected from campus.	The progress and estimated volume of trash and recyclable materials will be reported in the annual report.	The volume of trash and recyclable materials for the reporting period is still being determined.
6.3. Describe other proposed activities to address the Control of Floatables Discharges Measure:	• No additional activities are being proposed at this time. UNM will continue to explore additional activities to address the Control of Floatables Discharges Measure.	Additional proposed activities will be reported in the annual report.	No additional activities were reported.

PUBLIC EDUCATION AND OUTREACH ON STORMWATER IMPACTS

 7.1. Develop, revise, implement, and maintain an education and outreach part in P	Permit Activity	Proposed Plan	Measurable Goal	
program as required in Part LD.5.g.(i) and Part LD.5.g.(i): (i) The permittee shall individually or cooperatively, develop, revise, implement, and maintain a comprehensive stormwater program to educate the community, employees, businesses, and the general public of hazards associated with the illegal discharges on local waterways, as well as the steps that the public can take to reduce pollutants in stormwater. Permittees programs while updating those programs, as necessary, to comply with the requirements of this permit.impacts in the Albuquerque area watershed. uNM's efforts are aimed to educate the public about stormwater pollution and how citizens can control the impact of stormwater pollution. Some activities that UNM is involved in include: (1) posting stormwater pollution in the UNM Newsroom or The Daily Lobo publications; and (3) providing stormwater training to UNM staff. The information that UNM provides includes the proper handling, disposal and recycling of used motor vehicle fluids, houschold hazardous wastes, grass clippings, car wash water, use of fertilizers, pesticides and herbicides, oil and toxics on roadways and the steps to report disposal. Further, UNM educates pet owners about proper disposal of pet wastes.additional outreach education and outreach activities the message "No Dumping, only Rain in the Drain."(ii) The permittee must implement a public equivalent outreach activities about the impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. Theunterach activities about the impacts of stormwater runoff. Theoutreach program, ab additional duation and doutcal the unterach activities about the maintain pet waste collection stations on its Main Campus. EHS also educates	7.1. Develop, revise, implement, and	• UNM is actively involved in providing public		EHS has developed a
I.D.5.g.(i) and Part I.D.5.g.(ii):UNM's efforts are aimed to educate the public about stormwater pollution and how citizens can cooperatively, develop, revise, implement, and maintain a comprehensive stormwater program to educate the community, employees, businesses, and the general public of hazards associated with the illegal discharges and improper disposal of waste and about the impact that stormwater discharges on local waterways, as well as the steps that the public can take to reduce pollutants in stormwater. Permittees programs while updating those programs, as necessary, to comply with the requirements of this permit.UNM's efforts are aimed to educate the public about stormwater of stormwater glothing, disposal and recycling of used motor vehicle fluids, household hazardous wastes, grass necessary, to comply with the requirements of this permit.education and how citizens can activities that UNM is involved in include: (1) posting stormwater information in the UNM Newsroom or The Daily Lobo publications; and (3) providing stormwater training to UNM staff. The information that usposal and recycling of used motor vehicle fluids, household hazardous wastes, grass necessary, to comply with the requirements of this permit.education and how citizens can activities that UNM staff. The information that usposal and recycling of used motor vehicle fluids, household hazardous wastes, grass necessary, to comply with the requirements of this permit.education and how citizens activities that UNM staff. The information that usposal and recycling of used motor vehicle fluids, household hazardous wastes, grass no disposal of per wastes.education and how citizens activities that UNM vehicle fulling.education and how citizens activities that UNM vehicle the message "No DUE recon abov			 Discussion of 	
 (i) The permittee shall, individually or cooperatively, develop, revise, implement, and maintain a comprehensive stormwater program to educate the community, employces, businesses, and the general public of hazards associated with the illegal discharges and improper disposal of waste and about the impact that stormwater discharges on local waterways, as well as the steps that the public containe existing proviously covered under NMS000101 and NMR040000 must containe existing programs while updating those programs, as necessary, to comply with the requirements of this permit. (ii) The permittee must implement a public education program to distribute educational knowledge to the community or conduct equivalent outreach activities about the impact of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater discharges on water bodies and the steps that the public can take the requirements of this permit. (ii) The permittee must implement a public education program to distribute educational knowledge to the community or conduct equivalent outreach activities about the impact of stormwater runoff. The bodies and the steps that the public can take to reduce pollutants in stormwater runoff. The (iii) The permittee must implement a public education at the public can take to reduce at the to reduce pollutants in stormwater discharges on water bodies and the steps that the public can take to reduce the community or conduct equivalent outreach activities about the impact of stormwater runoff. The (iii) The permittee must implement a public educational knowledge to the community or conduct equivalent outreach activities about the impact of stormwater runoff. The bodies and the steps that the public can take to reduce at the toreach activities about the impact of stormwater runoff. The bodies and the steps that the public can take to reduce to runoff. The (iii) The permittee must implement a pu			additional	
cooperatively, develop, revise, implement, and maintain a comprehensive stormwater program to educate the community, employees, businesses, and the general public of hazards associated with the illegal and about the impact of stormwater information on the EHS Department website; (2) publishing stormwater information in the UNM Newsroom or The Daily Lobo publications, and (3) providing stormwater training to UNM staff. The information that discharges on local waterways, as well as the steps that the public can take to reduce pollutants in stormwater. Permittes previously covered under NMS000101 and NMR040000 must continue existing programs while updating those programs, as necessary, to comply with the requirements of this permit.control the impact of stormwater activities that tor maintain disposal and recycling of used motor vehicle fluids, household hazardous wates, grass necessary, to comply with the requirements of this permit.activities the training to UNM staff. the maintain pet waste collection stations on its Main Campus. EHS also educates owners and operators of UNM-related facilities regarding their responsibility to control pollutants in stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater discharges on watercontrol the impact of stormwater and improper disposal of vaste ell S also educates owners and operators of UNM-related facilities regarding their responsibility to control pollutants in stormwater discharges on watercontrol the impact of stormwater runoff. Thecontrol the impact of stormwater pollutionactivities for the curvater activities the proper handling, disposal and recycling periods. ENS ell to reduce pollutants in stormwater discharges on water bedies and the steps that the public can take to reduce pollutants i				
and maintain a comprehensive stormwater program to educate the community, employees, businesses, and the general public of hazards associated with the illegal discharges and improper disposal of waste and about the impact that stormwater discharges on local waterways, as well as the steps that the public can take to reduce pollutants in stormwater. Permittees proviously covered under NMS000101 and NMR040000 must continue existing programs while updating those programs, as necessary, to comply with the requirements of this permit.activities that UNM is involved in include: (1) posting stormwater information on the EHS Department website; (2) publishing stormwater information in the UNM Newsroom or The Daily Lobo publications; and (3) providing stormwater training to UNM staff. The information that UNM provides includes the proper handling, disposal and recycling of used motor vehicle fluids, household hazardous wastes, grass coadways and the steps to report illicit discharges and improper disposal. Further, UNM educates pet owners about proper disposal of pet wastes.performed by UNM staff will be the MS by induces efforts will continue to be summarized in the Annual Reports.performed by unit lets across campus with the message "No Dumping, only Rain in the Drain."(ii) The permittee must implement a public education program to distribute educational impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. The• UNM's EHS Department works with FM to maintain pet waste collection stations on its Main Campus. EHS also educates owners and operators of UNM-related facilities regarding their responsibility to control pollutants in stormwater discharges from their property to the MS4 by includin				
program to educate the community, employces, businesses, and the general public of hazards associated with the illegal discharges and improper disposal of waste and about the impact that stormwater discharges on local waterways, as well as the steps that the public can take to reduce pollutants in stormwater. Permittees previously covered under NMS000101 and NMR040000 must continue existing programs while updating those programs, as necessary, to comply with the requirements of this permit.posting stormwater information on the EHS Department website; (2) publishing stormwater information in the UNM Newsroom or The Daily Lobo publications; and (3) providing stormwater training to UNM staff. The information that tobo uselbications; and (3) providing stormwater discharges on local waterways, as well as the steps that the public can take to reduce pollutants in stormwater discharges on water bodies and the steps to the community or conduct equivalent outreach activities about the impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. Theposting stormwater information on the EHS Department website; (2) publishing stormwater the INM Newsroom or The Daily Lobo publications; and (3) providing stormwater discharges on water bodies and the steps to the public can take to reduce pollutants in stormwater runoff. TheContinue to administ posting stormwater information on the EHS Department website; (2) publishing stormwater the information that UNM staff training to UNM staff. The information that clippings, car wash water, use of fertilizers, pesticides and herbicides, oil and toxics on roadways and the steps to report illicit discharges and improper disposal of pet wastes.UNM staff the MS4 by including stormwater models to maintain				
 employees, businesses, and the general public of hazards associated with the illegal discharges and improper disposal of waste and about the impact that stormwater discharges on local waterways, as well as the steps that the public can take to reduce pollutants in stormwater. Permittees previously covered under NMS000101 and NMR040000 must continue existing programs while updating those programs, as necessary, to comply with the requirements of this permit. (ii) The permittee must implement a public education program to distribute educational knowledge to the community or conduct equivalent outreach activities about the impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater instormwater runoff. The Department website; (2) publishing stormwater information in the UNM Newsroom or The Daily Lobo publications; and (3) providing stormwater information in the UNM Newsroom or The Daily Lobo publications; and (3) providing stormwater information in the UNM Newsroom or The Daily Lobo publications; and (3) providing stormwater iso to Participated in formation in the UNM staff. The information that UNM provides includes the proper handling, disposal and recycling of used motor vehicle fluids, household hazardous wastes, grass clippings, car wash water, use of fertilizers, pet owners about proper disposal. Further, UNM educates pet owners about proper disposal of pet wastes. UNM's EHS Department works with FM to maintain pet waste collection stations on its Main Campus. EHS also educates owners and operators of UNM-related facilities regarding their responsibility to control pollutants in stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. The 				
of hazards associated with the illegalinformation in the UNM Newsroom or The Dailyprovided indischarges and improper disposal of waste and about the impact that stormwater discharges on local waterways, as well as the steps that the public can take to reduce pollutants in stormwater. Permittees proviously covered under NMS000101 and NMR040000 must continue existing programs while updating those programs, as necessary, to comply with the requirements of this permit.information in the UNM Newsroom or The Daily Lobo publications; and (3) providing stormwater training to UNM staff. The information that UNM provides the proper handling, disposal and recycling of used motor vehicle fluids, household hazardous wastes, grass clippings, car wash water, use of fertilizers, pesticides and therbicides, oil and toxics on roadways and the steps to report illicit discharges and improper disposal of pet wastes.• Outreach efforts will continue to be summarized in the Annual Reports.• Outreach efforts will continue to be summarized in the Annual Reports.(ii) The permittee must implement a public education program to distribute educational knowledge to the community or conduct equivalent outreach activities about the impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. The• UNM's EHS Department works with FM to maintain pet waste collection stations on its Main Campus. EHS also educates owners and operators of UNM-related facilities regarding their responsibility to control pollutants in stormwater gischarges from their property to the MS4 by including stormwater pollution• UNM academic stormwater pollution(ii) The permittee must implement a public education				
discharges and improper disposal of waste and about the impact that stormwater discharges on local waterways, as well as the steps that the public can take to reduce pollutants in stormwater. Permittees previously covered under NMS000101 and NMR040000 must continue existing programs while updating those programs, as necessary, to comply with the requirements of this permit.Lobo publications; and (3) providing stormwater training to UNM staff. The information that UNM provides includes the proper handling, disposal and recycling of used motor vehicle fluids, household hazardous wastes, grass necessary, to comply with the requirements of this permit.the Annual across campus with the message "No Dumping, only Rain in the Drain." Additionally, the IDDE recon above will find locations without these and replace them.(ii) The permittee must implement a public education program to distribute educational knowledge to the community or conduct equivalent outreach activities about the impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. TheUNM's EHS Department works with FM to maintain pet waste collection stations on its Main Campus. EHS also educates owners and operators of UNM-related facilities regarding their responsibility to control pollutants in stormwater discharges from their property to the MS4 by including stormwater pollutionthe Annual Reports.across campus with the message "No Dumping, only Rain in the Drain."(ii) The permittee must implement a public education program to distribute educational knowledge to the community or conduct equivalent outreach activities about the impacts of stormwater discharges on water bodies and the steps that the public can take <br< td=""><td></td><td></td><td></td><td></td></br<>				
and about the impact that stormwater discharges on local waterways, as well as the steps that the public can take to reduce pollutants in stormwater. Permittees previously covered under NMS000101 and programs while updating those programs, as necessary, to comply with the requirements of this permit.training to UNM staff. The information that UNM provides includes the proper handling, disposal and recycling of used motor vehicle fluids, household hazardous wastes, grass presticides and the steps to report illicit discharges and improper disposal. Further, UNM educates pet owners about proper disposal of pet wastes.Reports.the message "No Dumping, only Rain in the Drain."(ii) The permittee must implement a public education program to distribute educational knowledge to the community or conduct equivalent outreach activities about the impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. TheUNM staff. The information that UNM staff. The information that ultipot used motor vehicle fluids, household hazardous wastes, grass roadways and the steps to report illicit discharges and improper disposal. Further, UNM ducates pet owners about proper disposal of pet wastes.Outreach efforts will continue to be summarized in the Annual Reports.He message "No Dumping, only Rain in the Drain."(ii) The permittee must implement a public equivalent outreach activities about the impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. TheUNM's EH		•		
discharges on local waterways, as well as the steps that the public can take to reduce pollutants in stormwater. Permittees previously covered under NMS000101 and NMR040000 must continue existing programs while updating those programs, as necessary, to comply with the requirements of this permit.UNM provides includes the proper handling, disposal and recycling of used motor vehicle fluids, household hazardous wastes, grass clippings, car wash water, use of fertilizers, pesticides and herbicides, oil and toxics on roadways and the steps to report illicit discharges and improper disposal. Further, UNM educates pet owners about proper disposal of pet wastes.• Outreach efforts will continue to be summarized in the Annual Reports.• Outreach efforts will continue to be summarized in the Annual Reports.(ii) The permittee must implement a public education program to distribute educational knowledge to the community or conduct equivalent outreach activities about the impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. The• UNM's EHS Department works with FM to maintain pet waste collection stations on its Main Campus. EHS also educates owners and operators of UNM-related facilities regarding their responsibility to control pollutants in stormwater pollution• UNM academic semester and handed out fliers with stormwater pollution				
steps that the public can take to reduce pollutants in stormwater. Permittees previously covered under NMS000101 and NMR040000 must continue existing programs while updating those programs, as necessary, to comply with the requirements of this permit.disposal and recycling of used motor vehicle fluids, household hazardous wastes, grass clippings, car wash water, use of fertilizers, pesticides and herbicides, oil and toxics on roadways and the steps to report illicit discharges and improper disposal. Further, UNM educates pet owners about proper disposal of pet wastes.• Outreach efforts will continue to be summarized in the Drain."(ii) The permittee must implement a public education program to distribute educational knowledge to the community or conduct equivalent outreach activities about the impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. The• UNM's EHS Department works with FM to maintain pet waste collection stations on its Main Campus. EHS also educates owners and operators of UNM-related facilities regarding their responsibility to control pollutants in stormwater discharges from their property to the MS4 by including stormwater pollution• Outreach efforts will continue to be summarized in the Drain." Additionally, the IDDE recon above with otott these and replace them.			Reports.	
pollutants in stormwater. Permittees previously covered under NMS000101 and NMR040000 must continue existing programs while updating those programs, as necessary, to comply with the requirements of this permit.fluids, household hazardous wastes, grass clippings, car wash water, use of fertilizers, pesticides and herbicides, oil and toxics on roadways and the steps to report illicit discharges and improper disposal. Further, UNM educates pet owners about proper disposal of pet wastes.Additionally, the IDDE recon above will find locations without these and replace them.(ii) The permittee must implement a public education program to distribute educational knowledge to the community or conduct equivalent outreach activities about the impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. The• UNM's EHS Department works with FM to maintain pet waste collection stations on its Main Campus. EHS also educates owners and operators of UNM-related facilities regarding their responsibility to control pollutants in stormwater discharges from their property to the MS4 by including stormwater pollutionHoditionally, the IDDE recon above will find locations without these and replace them.				
 previously covered under NMS000101 and NMR040000 must continue existing programs while updating those programs, as necessary, to comply with the requirements of this permit. (ii) The permittee must implement a public education program to distribute educational knowledge to the community or conduct equivalent outreach activities about the impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. The clippings, car wash water, use of fertilizers, pesticides and herbicides, oil and toxics on roadways and the steps to report illicit discharges and improper disposal. Further, UNM educates pet owners about proper disposal of pet wastes. UNM's EHS Department works with FM to maintain pet waste collection stations on its Main Campus. EHS also educates owners and operators of UNM-related facilities regarding their responsibility to control pollutants in stormwater discharges from their property to the MS4 by including stormwater pollution Clippings, car wash water, use of fertilizers, pesticides and herbicides, oil and toxics on roadways and the steps that the public can take to reduce pollutants in stormwater runoff. The 				
NMR040000 must continue existing programs while updating those programs, as necessary, to comply with the requirements of this permit.pesticides and herbicides, oil and toxics on roadways and the steps to report illicit discharges and improper disposal. Further, UNM educates pet owners about proper disposal of pet wastes.summarized in the Annual Reports.will find locations(ii) The permittee must implement a public education program to distribute educational knowledge to the community or conduct equivalent outreach activities about the impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. TheUNM's EHS Department works with FM to maintain pet waste collection stations on its Main Campus. EHS also educates owners and operators of UNM-related facilities regarding their responsibility to control pollutants in stormwater discharges from their property to the MS4 by including stormwater pollutionwill find locations	1			
programs while updating those programs, as necessary, to comply with the requirements of this permit.in the steps to report illicit discharges and improper disposal. Further, UNM educates pet owners about proper disposal of pet wastes.in the Annual Reports.without these and replace them.(ii) The permittee must implement a public education program to distribute educational knowledge to the community or conduct equivalent outreach activities about the 				
necessary, to comply with the requirements of this permit.and improper disposal. Further, UNM educates pet owners about proper disposal of pet wastes.Reports.replace them.(ii) The permittee must implement a public education program to distribute educational knowledge to the community or conduct equivalent outreach activities about the impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. TheUNM's EHS Department works with FM to maintain pet waste collection stations on its Main Campus. EHS also educates owners and operators of UNM-related facilities regarding their responsibility to control pollutants in stormwater discharges from their property to the MS4 by including stormwater pollutionReports.replace them.	NMR040000 must continue existing			
this permit.pet owners about proper disposal of pet wastes.EHS participated in(ii) The permittee must implement a public education program to distribute educational knowledge to the community or conduct equivalent outreach activities about the impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. The• UNM's EHS Department works with FM to maintain pet waste collection stations on its Main Campus. EHS also educates owners and operators of UNM-related facilities regarding their responsibility to control pollutants in stormwater discharges from their property to the MS4 by including stormwater pollutionEHS participated in "Welcome back days" at the beginning of the UNM academic semester and handed out fliers with stormwater education				
Image: Construct on the steps that the public can take to reduce pollutants in stormwater runoff. TheImage: Construct on the steps that the public can take to reduce pollutants in stormwater runoff. TheEHS participated in "Welcome back days" at the beginning of the UNM's EHS Department works with FM to maintain pet waste collection stations on its Main Campus. EHS also educates owners and operators of UNM-related facilities regarding their responsibility to control pollutants in stormwater pollutionEHS participated in "Welcome back days" at the beginning of the UNM academic semester and handed out fliers with stormwater pollution			Reports.	replace them.
(ii) The permittee must implement a public education program to distribute educational knowledge to the community or conduct equivalent outreach activities about the impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. The• UNM's EHS Department works with FM to maintain pet waste collection stations on its Main Campus. EHS also educates owners and operators of UNM-related facilities regarding their responsibility to control pollutants in stormwater pollution"Welcome back days" at the beginning of the UNM academic semester and handed out fliers with stormwater pollution	this permit.	pet owners about proper disposal of pet wastes.		
education program to distribute educational knowledge to the community or conduct equivalent outreach activities about the impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. Thethe bodies and the steps that the public can take MS4 by including stormwater pollutiondays" at the beginning of the UNM academic semester and handed out fliers with				
knowledge to the community or conduct equivalent outreach activities about the impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. TheCampus. EHS also educates owners and operators of UNM-related facilities regarding their responsibility to control pollutants in stormwater pollutionbeginning of the UNM academic semester and handed out fliers with stormwater education				
equivalent outreach activities about the impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. Theoperators of UNM-related facilities regarding their responsibility to control pollutants in stormwater pollutionUNM academic semester and handed out fliers with stormwater education				5
impacts of stormwater discharges on water bodies and the steps that the public can take to reduce pollutants in stormwater runoff. Thetheir responsibility to control pollutants in stormwater pollutionsemester and handed out fliers with stormwater education				
bodies and the steps that the public can take to reduce pollutants in stormwater runoff. Thestormwater discharges from their property to the MS4 by including stormwater pollutionout fliers with stormwater education				
to reduce pollutants in stormwater runoff. The MS4 by including stormwater pollution stormwater education				
	permittee musi.	prevention training to UNM Building		merature.
Coordinators and staff. EHS is also including stormwater education in its Basic Annual Safety EHS has created an				FHS has created an
storm, all of our duration in his Dusie Thinau Surety				
Training require to be tanted and by the				
UNM employees. runs on the KUNM public radio station		Univi employees.		
asking the public to				
protect water quality				

(a) Define the goals and objectives of the		by scooping pet
program based on high priority community-		waste.
wide issues;		
(b) Develop or utilize appropriate educational		
materials, such as printed materials, billboard		
and mass transit advertisements, signage at		
select locations, radio advertisements,		
television advertisements, and websites;		
() I.f		
(c) Inform individuals and households about		
ensuring proper septic system maintenance,		
ensuring the proper use and disposal of		
landscape and garden chemicals including		
fertilizers and pesticides, protecting and		
restoring riparian vegetation, and properly		
disposing of used motor oil or household		
hazardous wastes;		
(d) Inform individuals and groups how to		
become involved in local stream and beach		
restoration activities as well as activities that		
are coordinated by youth service and		
conservation corps or other citizen groups;		
(e) Use tailored public education program,		
using a mix of locally appropriate strategies,		
to target specific audiences and communities.		
Examples of strategies include distributing		
brochures or fact sheets, sponsoring speaking		
engagements before community groups,		
providing public service announcements,		
implementing educational programs targeted		
at school age children, and conducting		
community-based projects such as storm		
drain stenciling, and watershed cleanups; and		
(f) Use materials or outreach programs		
directed toward targeted groups of		
unceicu iowalu iargeicu gloups of		

commercial, industrial, and institutional entities likely to have significant stormwater impacts. For example, providing information to restaurants on the impact of grease clogging storm drains and to garages on the impact of oil discharges. The permittee may tailor the outreach program to address the viewpoints and concerns of all communities, particularly minority and disadvantaged communities, as well as any special concerns relating to children. The permittee must make information available for non-English speaking residents, where appropriate.		
 7.2. Enhance the program to include requirements in Part I.D.5.g.(v) through Part I.D.5.g.(viii): (v) Where necessary to comply with the Minimum Control Measures established in Part I.D.5.g.(i) and Part I.D.5.g.(ii), the permittee should develop a program or modify/revise an existing education and outreach program to: 		
(a) Promote, publicize, and facilitate the use of Green Infrastructure (GI)/Low Impact Development (LID)/Sustainability practices; and		
(b) Include an integrated public education program (including all permittee departments and programs within the MS4) regarding litter reduction, reduction in pesticide/herbicide use, recycling and proper disposal (including yard waste, hazardous waste materials, and used motor vehicle fluids), and GI/LID/Sustainable practices (including xeriscaping, reduced water consumption,		

water harvesting practices allowed by the New Mexico State Engineer Office).		
(vi) The permittee may collaborate or partner with other MS4 operators to maximize the program and cost effectiveness of the required outreach.		
(vii) The education and outreach program may use citizen hotlines as a low-cost strategy to engage the public in illicit discharge surveillance.		
(viii) The permittee may use stormwater educational materials provided by the State, Tribe, EPA, environmental, public interest or trade organizations, or other MS4s. The permittee may also integrate the education and outreach program with existing education and outreach programs in the Middle Rio Grande area. Example of existing programs include:		
(a) Classroom education on stormwater;		
 A. Develop watershed map to help students visualize area impacted. B. Develop pet-specific education (b) Establish a water committee/advisor group; 		
 (c) Contribute and participate in Stormwater Quality Team; (d) Education/outreach for commercial activities; (e) Hold regular employee trainings with industry groups 		
(f) Education of lawn and garden activities;(g) Education on sustainable practices;		

(h) Education/outreach of pet waste management;		
(i) Education on the proper disposal of household hazardous waste;		
(j) Education/outreach programs aimed at minority and disadvantaged communities and children;		
(k) Education/outreach of trash management;		
(1) Education/outreach in public events;		
A. Participate in local events—brochures, posters, etc.		
B. Participate in regional events (i.e., State Fair, Balloon Fiesta).		
(m) Education/outreach using the media (e.g. publish local newsletters);		
(n) Education/outreach on water conservation practices designed to reduce pollutants in stormwater for home residences.		
7.3. Describe other proposed activities to address the Public Education and Outreach on Stormwater Impacts Measure:		

PUBLIC INVOLVEMENT AND PARTICIPATION

Permit Activity	Proposed Plan	Measurable Goal	Status
8.1. Develop (or update), implement, and	•		UNM requested
maintain a public involvement and	 UNM continues to welcome public 	Discussion of public	public participation in
participation plan as	participation in its SWMP. The EHS	input and their	its SWMP. The
required in Part I.D.5.h.(ii) and Part	Department continues involving other UNM	comments will be	SWMP is posted on
I.D.5.h.(iii):	departments, e.g., FM, OCP, etc., as	provided in the	our website and a link
	stakeholders in the development and revision	Annual Report.	advertised in the
(ii) The permittee shall develop, revise,	of UNM's SWMP. UNM also participates in		Daily Lobo
implement and maintain a plan to encourage	local Albuquerque area public forums where		newspaper.
public involvement and provide opportunities	active public involvement occurs, e.g., the		
for participation in the review, modification	Technical Advisory Group on stormwater		The EHS Department
and implementation of the SWMP; develop	issues.		continues involving
and implement a process by which public			other UNM
comments to the plan are received and	• EHS Department regularly trains and updates		departments, e.g.,
reviewed by the person(s) responsible for the	other UNM Departments about stormwater		FM, PDC, etc., as
SWMP; and, make the SWMP available to	issues and solicits input and participation.		stakeholders in the
the public and to the operator of any MS4 or			development and
Tribal authority receiving discharges from the			revision of UNM's
MS4. Permittee previously covered under			SWMP. EHS also
NMS000101 or NMR040000 must continue			participated in local
existing public involvement and participation			Albuquerque area
programs while updating those programs, as necessary, to comply with the requirements of			public forums where active public
this permit.			involvement occurs,
uns permit.			e.g., the Technical
(iii) The plan required in Part I.D.5.h.(ii) shall			Advisory Group on
include a comprehensive planning process			stormwater issues.
which involves public participation and where			storniwater issues.
necessary intergovernmental coordination, to			
reduce the discharge of pollutants to the			
maximum extent practicable using			
management practices, control techniques and			
system, design and engineering methods, and			
such other provisions which are appropriate.			
The permittee must include the following			
elements in the plan:			
P			

(a) A detailed description of the general plan for informing the public of involvement and participation opportunities, including types of activities; target audiences; how interested parties may access the SWMP; and how the public was involved in development of the		
SWMP;(b) The development and implementation of at least one (1) assessment of public behavioral change following a public education and/or participation event;		
(c) A process to solicit involvement by environmental groups, environmental justice communities, civic organizations or other neighborhoods/organizations interested in water quality-related issues, including but not limited to the Middle Rio Grande Water		
Quality Work Group, the Middle Rio Grande Bosque Initiative, the Middle Rio Grande Endangered Species Act Collaborative Program, the Middle Rio Grande- Albuquerque Reach Watershed Group, the Pueblos of Santa Ana, Sandia and Isleta, Albuquerque Bernalillo County Water Utility		
Authority, UNM Colleges and Schools, and Chartered Student Organizations; and (d) An evaluation of opportunities to utilize volunteers for stormwater pollution		
 prevention activities and awareness throughout the area. 8.2. Describe the plan to comply with State, Tribal, and local notice requirements when 	• UNM provided public notice of its plan to	
implementing a Public Involvement and Participation Program as required in Part I.D.5.h.(iv):	submit a NOI and SWMP to the EPA. The notice was published in the Albuquerque Journal. The draft NOI and SWMP were published on the EHS website, with copies	

(iv) The permittee shall comply with State, Tribal and local public notice requirements when implementing a public involvement/ participation program.	available at the Zimmerman Library, and the public was allowed 30 days to submit written comments.	
 8.3. Describe a plan to include elements as required in Part I.D.5.h.(v): (v) The public participation process must reach out to all economic and ethnic groups. Opportunities for members of the public to participate in program development and implementation include serving as citizen representatives on a local stormwater management panel, attending public hearings, working as citizen volunteers to educate other individuals about the program, assisting in program coordination with other pre- existing programs, or participating in volunteer monitoring efforts. 		
8.4. As required in Part I.D.5.h.(viii) provide the internet site (or website) where the SWMP document, Annual Reports, and other documents will be available to the public:	EHS will publish UNM's SWMP and Annual Reports on its website and provide a forum to seek and address input from the public.	
 (viii) The permittee must provide public accessibility of the Stormwater Management Program (SWMP) document and Annual Reports online via the Internet and during normal business hours at the MS4 operator's main office, a local library, posting on the internet and/or other readily accessible location for public inspection and copying consistent with any applicable federal, state, tribal, or local open records requirements. Upon a showing of significant public interest, the MS4 operator is encouraged to hold a public meeting (or include in the agenda of in a regularly scheduled city council meeting, 		

etc.) on the NOI, SWMP, and Annual		
Reports. (See Part III B)		
8.5. Enhance the program to include		
requirements in Part I.D.5.h.(ix):		
(ix) The permittee may integrate the public		
Involvement and participation program with		
existing education and outreach programs in		
the Middle Rio Grande area. Example of		
existing programs include: Adopt-A- Stream		
Programs; Attitude Surveys; Community		
Hotlines (e.g. establishment of a "311"-type		
number and system established to handle		
storm-water-related concerns, setting up a		
public tracking/reporting system, using		
phones and social media); Revegetation		
Programs; Storm Drain Stenciling Programs;		
Stream cleanup and Monitoring		
program/events.		
8.6. Describe other proposed activities to		
address the Public Involvement and		
Participation Measure:		

DISCHARGES TO IMPAIRED WATERS

Permit Activity	Proposed Plan	Measurable Goal	Status
			UNM entered into a
2.b) The permittee shall control the	UNM continues to implement practices that reduce bacterial	Submission of water	monitoring
discharges of pollutant(s) of concern to	contamination of stormwater. Most of these practices have	quality monitoring	cooperative and
impaired waters and waters with approved	multi-purpose benefits in addition to stormwater pollution	results in DMRs and	signed an
TMDLs as provided in sections (i) and (ii)	prevention and bacterial reduction. These ongoing practices	Annual Reports.	intergovernmental
below, and shall assess the success in	involve the structural best management practices (BMPs) in		agreement with
controlling those pollutants.	the operation of our facilities and grounds as well as our		several agencies
	public education and outreach efforts. The following		during the reporting
(i) Discharges to Water Quality Impaired	describes UNM's program to minimize contamination of		cycle. It also provided
Water Bodies with an Approved TMDL	stormwater.		the EPA a monitoring
If the permittee discharges to an impaired			plan and certification
water body with an approved TMDL (see	UNM is aware of the bacterial source tracking study in the local		to start monitoring
Appendix B of permit), where stormwater has	Middle Rio Grande watershed which identified the various		stormwater.
the potential to cause or contribute to the	source animal enteric bacteria contributions. The study		Monitoring results
impairment, the permittee shall include in the	indicated that birds contributed the most at roughly a third of		(DMRs) will be
SWMP controls targeting the pollutant(s) of	the bacteria loading. Dogs were the second largest source.		reported by one of the
concern along with any additional or modified	Therefore, UNM's efforts have been focused on controlling		co-permittees
controls required in the TMDL and this	bird and dog waste impacts on stormwater.		(AMAFCA) on
section. The SWMP and required annual	a) Pet Waste Stations - UNM's campus is open to		behalf of the
reports must include information on	the public and people do walk their dogs on		cooperative.
implementing any focused controls required	campus. This activity is centered around the		
to reduce the pollutant(s) of concern.	green spaces, e.g., the Duck Pond on the Central		
	Campus and Golf Course on North Campus. FM		
(ii) Discharges Directly to Water Quality	has installed and maintains pet waste disposal		
Impaired Water Bodies without an	bag dispensers on the east and west sides of the		
Approved TMDL:	Duck Pond area. The North Campus		
The permittee shall also determine whether	Neighborhood Association has been stocking		
the permitted discharge is directly to one or	shopping bags for similar purposes on the		
more water quality impaired water bodies	southeast corner of the North Golf Course where		
where a TMDL has not yet been approved by	many folks begin on the perimeter jogging trail.		
NMED and EPA. If the permittee discharges	This is also a notable example of public		
directly into an impaired water body without	involvement with stormwater pollution		
an approved TMDL, the permittee shall	prevention on campus.		
perform certain activities (see permit for full	b) Bird Controls - UNM continues bird control		
description of such activities).	efforts, especially related to roosting pigeons on		
	UNM buildings. Bird control efforts range from		
	netting at Coronado dormitory trash storage		

	area, equipment bird skirting at the Business	
	Center and bird control wires on the Electrical	
	Engineering & Computer Engineering building	
	window sills. UNM also has an ongoing trapping	
	program that captures hundreds of pigeons a	
	year on many campus roof tops or wherever	
	there may be a roosting problem.	
c)	Street and Sidewalk Sweeping - UNM makes a	
	great effort to keep the campus grounds	
	beautiful. FM efforts include regular street	
	sweeping and sidewalk sweeping. UNM's	
	street sweeping schedule may be among the	
	most frequent in the metro area, and this serves	
	to protect stormwater quality from	
	contaminants, including bacteria laden animal	
	wastes on hard-scaping.	
d)	Trash & Litter Controls -The local bacterial	
	tracking study also indicated that humans are	
	one of the smaller sources of bacterial	
	contamination to stormwater. In addition to the	
	homeless population in the metro area that may	
	not be using bathrooms, it was recognized that	
	leaking trash dumpsters and compactors may	
	contribute to some of the human contamination.	
	Therefore, lids are installed and kept closed on	
	UNM's large trash dumpsters to keep	
	stormwater out. The multitude of small trash	
	receptacles along campus sidewalks, at building	
	entrances, etc. are also always lined with trash	
	bags and usually topped with lids that allow trash	
	in and keep it inside. Bagging and lids also	
	prevent wind from blowing trash out of	
	dumpsters and receptacles.	
e)	Leaked Fluid- If trash compactors leak fluids,	
	the standard practice at UNM is to absorb the	
	leaked fluids and dispose of the absorbent with	
	the other solid waste. Litter is picked up daily,	
	Monday through Friday, all over campus and is	
	disposed of properly with other solid wastes.	

Litter pickup includes scooping visible pet waste	
as well as floatables/litter. UNM notifies the	
COA about problems with pet wastes being left	
from occupants of neighboring apartment	
complexes who bring their dogs onto campus	
property to defecate.	
f) Stormwater Retention Ponds - UNM has a few	
stormwater retention ponds on the South	
Campus and on the North Campus. In addition	
to reducing peak flow into the local MS4, these	
ponds act to settle out suspended solids and	
expose bacteria to solar UV radiation. Solar UV	
disinfection and settling out suspended solids	
both help to reduce bacteria levels in stormwater	
discharged from campus.	
g) Public Education and Outreach & Campus	
Training - Stormwater pollution prevention	
training will become part of UNM's Mandatory	
Basic Annual Safety Training (BAST) program	
for all UNM employees. Additionally, UNM's	
Environmental Health and Safety (EHS)	
department conducts specialized stormwater	
pollution prevention training to FM employees.	
EHS's specialized training includes an	
emphasis on pet waste pickup and measures to	
minimize bacterial, nutrient and sediment	
contamination. At UNM's Welcome Back	
Days event at the beginning of each semester,	
EHS has had booths with handouts on	
stormwater pollution prevention including pet	
wastes and measures to minimize bacterial	
contamination. EHS's website also has	
information on stormwater pollution prevention	
including pet wastes and measures to minimize	
bacterial contamination.	
UNM continues to operate pursuant to the COA bacterial	
program as necessary for consistency with the new E-Coli	
TMDL. UNM, as a Phase 1 MS4 participant in a cooperative	

WET WEATHER MONITORING

Permit Activity	Proposed Plan	Measurable Goal	Status
As described in Part III, A.1, permittees shall	All discharges during a storm event are collected at outfall		UNM entered into a
conduct wet weather monitoring to gather	locations.	Provide	monitoring
information on the response of receiving		results of the	cooperative and
waters to wet weather discharges from the	• UNM and its current MS4 partners have hired the	assessment in	signed an
MS4 during both wet season (July 1 through	USGS to perform sample collection at 5	each annual	intergovernmental
October 31) and dry Season (November 1	representative outfall locations. If new wet weather	report.	agreement with
through June 30).	monitoring sites are installed, certification that they		several agencies
	are operational, and actual monitoring at these sites		during the reporting
Wet Weather Monitoring shall be conducted	will be provided by April 15, 2016. A detailed		cycle. It also provided
at outfalls, internal sampling stations, and/or	description of the monitoring scheme will be		the EPA a monitoring
in-stream monitoring locations at each water	submitted for EPA and NMED approval by December		plan and certification
of the US that runs in each entity or entities'	2015. Samples will be analyzed for all of the		to start monitoring
jurisdiction(s).	parameters in Part III A.1.b according to the schedule		stormwater.
	in Part III A.1.b for wet weather.		Monitoring results
Permittees may choose either Option A			(DMRs) will be
(individual monitoring) or Option B	• Composite samples are collected using an automated		reported by one of the
(cooperative monitoring program). As	ISCO sampling device. Grab samples are collected		co-permittees
described in Part III A.1.b:	by USGS personnel. Temperature probes		(AMAFCA) on
	continuously record air and water temperatures.		behalf of the
Cooperative monitoring program will monitor	Sondes are used to monitor D.O., water temperature,		cooperative.
waters coming into the watershed (upstream)	and conductivity.		
and leaving the watershed (downstream).			
Include sampling for TSS, TDS, COD,			
BOD5, DO, oil and grease, E.coli, pH, total			
kjeldahl nitrogen, nitrate plus nitrite,			
dissolved phosphorus, total ammonia plus			
organic nitrogen, total phosphorus, PCBs and			
Gross alpha.			
Monitoring for temperature at outfalls and/or			
Rio Grande monitoring locations.			
Rio Grande montoring locations.			
Include additional parameters from			
monitoring conducted under permits			
NMS000101, NMR040000 or/and			

NMR04000I whose mean values are at or		
Nivirk040001 whose mean values are at or		
above a WQS.		
Sample the pollutants for a minimum of 7 storm events per location during the permit term with at least 3 events wet season and 2		
storm events per location during the normit		
storm events per location during the permit		
term with at least 3 events wet season and 2		
events in dry season.		
5		
	I contraction of the second	1

DRY WEATHER DISCHARGE SCREENING OF MS4

Permit Activity	Proposed Plan	Measurable Goal	Status
As described in part III.A.2, permittee shall:			UNM entered into a
	• There are no perennial streams in the Albuquerque	Provide	monitoring
Identify, investigate, and address areas within	Metropolitan area. As such, the dry weather	results of the	cooperative and
its jurisdiction that may be contributing	screening program serves a dual purpose as an illicit	assessment in	signed an
excessive levels of pollutants to the Municipal	discharge screening analysis. Seventeen locations,	each annual	intergovernmental
Separate Storm Sewer System as a result of	which screen 100% of the MS4 and target industrial	report.	agreement with
dry weather discharges (i.e., discharges from	areas, have been chosen. Should any discharge be	-	several agencies
separate storm sewers that occur without the	present in a quantity sufficient for analysis, it will be		during the reporting
direct influence of runoff from storm events,	screened for BOD5, sediment or a parameter		cycle. It also provided
e.g. illicit discharges, allowable non-	addressing sediment (e.g. TSS or turbidity), E. coli,		the EPA a monitoring
stormwater, groundwater infiltration, etc.).	Oil and Grease, and nutrients. Any discharge		plan and certification
Due to the arid and semi-arid conditions of	collected will be a grab sample.		to start monitoring
the area, the dry weather discharges screening			stormwater.
program may be carried out during both wet			Monitoring results
season (July 1 through October 31) and dry			(DMRs) will be
Season (November 1 through June 30). This			reported by one of the
program may be coordinated with the illicit			co-permittees
discharge detection and elimination program			(AMAFCA) on
required in Part I.D.5.e.			behalf of the
			cooperative.
Include sufficient screening points to			Dry weather
adequately assess pollutant levels from all			screening at UNM is
areas of the MS4.			done as part of the
			IDDE.
Screen for, at a minimum, BOD5, sediment or			
a parameter addressing sediment (e.g., TSS or			
turbidity), E. coli, Oil and Grease, nutrients,			
any pollutant that has been identified as cause			
of impairment of a waterbody receiving			
discharges from that portion of the MS4,			
including temperature.			
Specify the compline on the second			
Specify the sampling and non-sampling			
techniques to be issued for initial screening			
and follow-up purposes. Sample collection			
and analysis need not conform to the			
requirements of 40 CFR Part 136; and			

Perform monitoring only when an antecedent dry period of at least seventy-two (72) hours after a rain event greater than 0.1 inch in magnitude is satisfied.			
---	--	--	--

List of Supplementary Documents

Storm drain inlets for quarterly maintenance

CMC Contract Summary Memo

Construction Site Inspection Checklist

IDDE Locations

IDDE Inspection Checklist

Table 1

UNM Storm Drain Inlets for Quarterly Maintenance and Measurement Operations

Inlet

LOCATION

- 1. West of Centennial Engineering (Bldg.122) in roadway along West Curb line
- 2. West of Hibben Center (Bldg. 15) in bump out on West side of road (2-inlets)
- 3. North of Zimmerman (Bldg. 53) in parking lot
- 4. Walkway east of Zimmerman (Bldg. 53) and East of Collage of Education (Bldg. 57)
- 5. SE of Hokona Zia (Bldg. 58) in Redondo Way
- 6. NE of Simpson Hall (Bldg. 66) in Redondo Way
- 7. South of Santa Clara (Bldg. 61) in Redondo Way
- 8. North of SRC Commons (Bldg. 88)
- 9. NE of Mesa Vista (Bldg. 56) at Area 3
- 10. South side of Duck Pond
- 11. SE side of Scholes Hall (Bldg. 10)
- 12. SW of Chapel (Bldg. 25)
- 13. East of Bandelier Hall East (Bldg. 8) at Rose Garden
- 14. North side of EECE (Bldg. 46) in south end of parking lot
- 15. NW of Ford Utilities (Bldg. 116) in parking lot
- 16. SW corner of Novitski Hall (Bldg. 249) in SW corner of south parking lot
- 17. South side Of HSSB (Bldg. 266) in walkway
- 18. NW of HSSB (Bldg. 266) in lawn area
- 19. NW of Novitski Hall (Bldg. 249) in SE corner of north parking lot (2-inlets)
- 20. NW of Observatory (Bldg. 208) in NW corner of parking lot.

Created by FM

Version Date: Sept. 1, 2012

UNM Stormwater Management Program

Bohannan 🛦 Huston

Courtyard I 7500 Jefferson St. NE Albuquerque, NM 87109-4335

MEMORANDUM

www.bhinc.com voice: 505.823.1000 facsimile: 505.798.7988 toll free: 800.877.5332

DATE: August 20, 2021

- **TO:** Patrick Chavez, PE, AMAFCA, Representative for Compliance Monitoring Cooperative (CMC) Members
- FROM: Sarah Ganley, PE, ENV SP

SUBJECT: CMC Stormwater Monitoring Reporting AMAFCA On-Call Task 15 – Contract Summary Memo for FY 2021

Bohannan Huston, Inc. (BHI) has been tasked to perform water quality services for the Compliance Monitoring Cooperative (CMC) Stormwater Data Verification, Database, and Reporting for the Wet Weather Stormwater Quality Monitoring Program. This work is through an AMAFCA on-call contract and the CMC has delegated AMAFCA to manage this task order. Included with this Task, the CMC members, except for the City of Albuquerque, have delegated AMAFCA to enter the CMC data into the EPA electronic Discharge Monitoring Report (NetDMR) forms. The scope of work for this Task includes data verification of the stormwater laboratory analysis results, compiling the analysis results into a database, and calculating the E. coli loading to compare with the Waste Load Allocation (WLA) for the qualifying storm events. The stormwater compliance monitoring is being conducted separately by Daniel B. Stephens & Associates, Inc. (DBS&A) and is not a part of this on-call task.

This Task is being conducted to assist the CMC members with their comprehensive monitoring and assessment program for compliance under the 2014 Middle Rio Grande Watershed Based Municipal Separate Storm Sewer System (MS4) Permit, NPDES Permit No. NMR04A000 ("WSB MS4 Permit"). The WSB MS4 Permit was issued on December 22, 2014 for a 5-year term with an expiration date of December 19, 2019. In December 2019, the WSB MS4 Permit went into administrative continuance when EPA Region 6 did not issue a new MS4 Permit before the expiration date of the existing WSB MS4 Permit.

The required CMC sampling for the WSB MS4 Permit term (2014 to 2019) was completed in FY 2019. Until a new MS4 Permit is issued, no additional compliance stormwater sampling for the CMC is required. There were two (2) CMC monitoring results obtained, though not required by the MS4 Permit, in FY 2021. Two CMC memos were completed to report the results: *FY 2021 - CMC Wet Season, Wet Weather Stormwater Monitoring Data Verification, Analysis Results Database, and Reporting Memo* dated April 22, 2021, and *FY 2021 - CMC Dry Season, Wet Weather Stormwater Monitoring Data Verification, Analysis Results Database, and Reporting Data Verification, Analysis Results Database, and Reporting Data Verification, Analysis Results Database, and Reporting Memo dated August 20, 2021.*

For this Task, BHI has not completed any data entry related to the EPA NetDMRs for FY 2021. For AMAFCA and the CMC members that have delegated NetDMR entry to AMAFCA through signed Memorandums of Agreement, there are currently no open NetDMRs for this MS4 Permit in Patrick Chavez AMAFCA August 20, 2021 Page 2

the EPA NetDMR system. Attachment 1 of the FY 2021 - CMC Dry Season, Wet Weather Stormwater Monitoring Data Verification, Analysis Results Database, and Reporting Memo dated August 20, 2021, contains all of the lab data that would be entered into the NetDMR, if there were open and required forms.

It is recommended that the CMC members submit the two FY 2021 CMC memos with their MS4 Annual Report to EPA. As was recommended last year, if the CMC does continue wet weather compliance monitoring during administrative continuance of this MS4 Permit, the CMC members should continue to summarize, as applicable, any wet weather monitoring activity, results, and E. coli loading calculations in future MS4 Annual Reports.

SG/ab

Bohannan 🛦 Huston

Engineering Spatial Data Advanced Technologies

> Courtyard I 7500 Jefferson St. NE Albuquerque, NM 87109-4335

MEMORANDUM

www.bhinc.com voice: 505.823.1000 facsimile: 505.798.7988 toll free: 800.877.5332

DATE: August 20, 2021

- TO: Jerry Lovato, PE, AMAFCA Patrick Chavez, PE, AMAFCA
- FROM: Sarah Ganley, PE, ENV SP
- SUBJECT: CMC Dry Season, Wet Weather Stormwater Monitoring Data Verification, Analysis Results Database, and Reporting Memo FY 2021 Dry Season (November 1, 2020 to June 30, 2021)

Notification of In-Stream Water Quality Exceedances

For downstream notification purposes, the following parameters for in-stream samples taken in the Rio Grande at the Isleta Diversion Dam for the FY 2021 dry season had results that exceeded applicable water quality standards for E. coli and Polychlorinated Biphenyls (PCBs). Table 1 summarizes the samples with exceedances and the applicable water quality standard (WQS) that was exceeded. Additional details on the sampling results are provided in this memo.

Table 1: Parameters Detected Above Applicable Water Quality Standards CMC FY 2021 Dry Season Monitoring

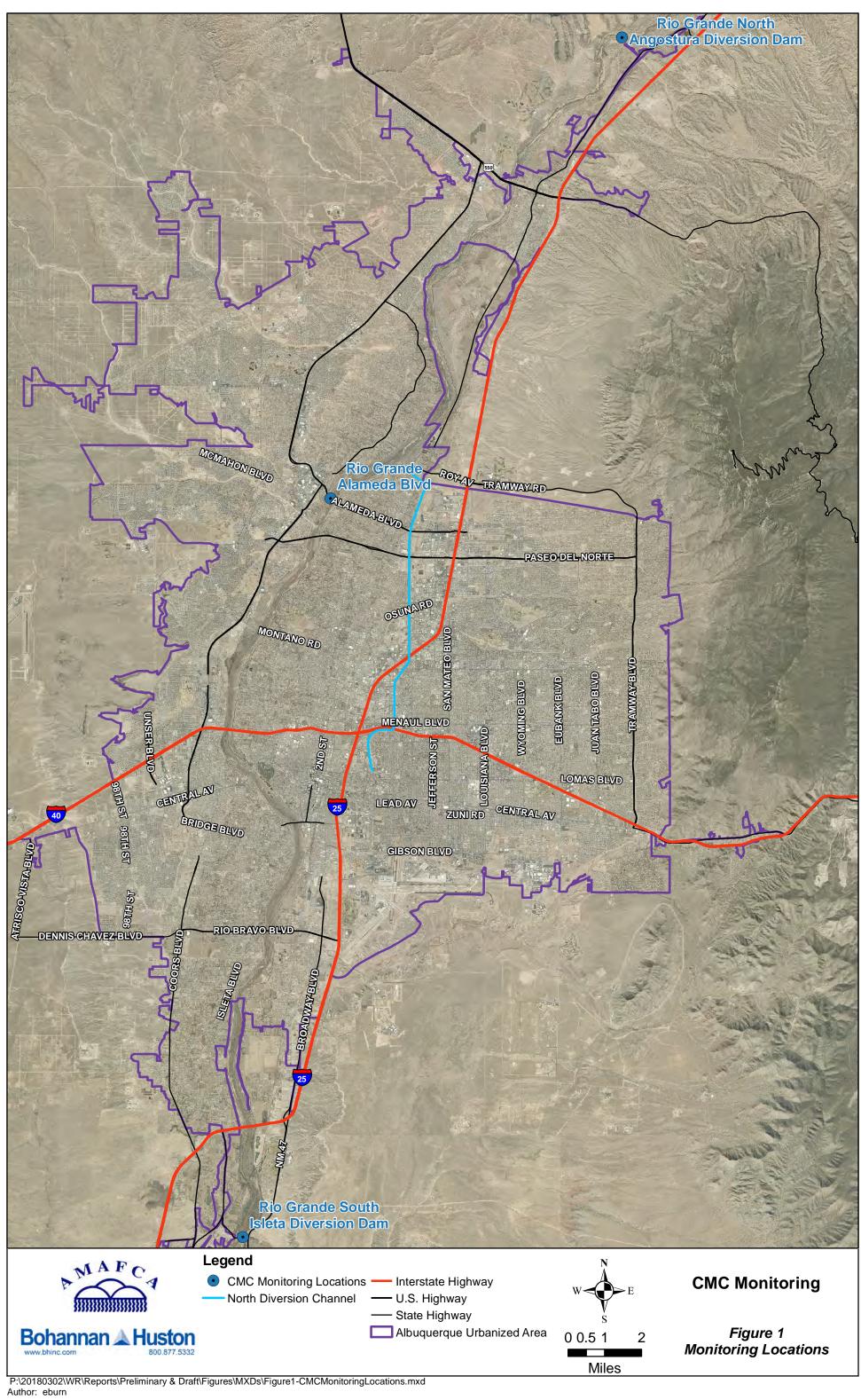
	Parameters, Applicable Water Quality Standard (WQS), and Results Exceeding Applicable WQS		
Sampling Date Location	E. coli	PCBs	
	WQS: 88 CFU/100 ml	WQS: 0.00017 ug/L	
	Pueblo of Isleta Primary	Pueblo of Isleta Human	
	Contact Ceremonial &	Health Criteria (based on fish	
	Recreational	consumption only)	
4/29/2021 Rio Grande South Isleta Diversion Dam	1,573 CFU/100ml	0.000919 ug/L	

Overview of Stormwater Monitoring Activity

Bohannan Huston, Inc. (BHI) has been tasked to perform water quality services for the Compliance Monitoring Cooperative (CMC) Stormwater Data Verification, Database, and Reporting for the Wet Weather Stormwater Quality Monitoring Program for Fiscal Year (FY) 2021 (July 1, 2020 to June 30, 2021). The scope of work for this task includes data verification of the stormwater laboratory analysis results, compiling the analysis results into a database, and calculating the E. coli loading to compare with the Waste Load Allocation (WLA) for the qualifying storm events. The stormwater compliance monitoring is being conducted separately by Daniel B. Stephens & Associates, Inc. (DBS&A) and is not a part of this task. This task is being conducted

CMC Dry Season, Wet Weather Stormwater Monitoring FY 2021 Dry Season (November 1, 2020 to June 30, 2021) August 20, 2021 Page 2

to assist the CMC members with their comprehensive monitoring and assessment program for compliance under the 2014 Middle Rio Grande (MRG) Watershed Based Municipal Separate Storm Sewer System (MS4) Permit, NPDES Permit No. NMR04A000 ("WSB MS4 Permit").


The WSB MS4 Permit entered Administrative Continuance in December 2019 when U.S. Environmental Protection Agency (EPA) Region 6 did not issue a new MS4 Permit before the current MS4 Permit's expiration date. The MRG Technical Advisory Group (TAG) sent EPA a letter dated October 15, 2019, acknowledging Administrative Continuance after the expiration date of the 5-year Permit term. Until a new MS4 Permit is issued, there are no compliance monitoring requirements for the CMC in the Rio Grande. As identified in the CMC Monitoring Plan, the WSB MS4 Permit required a minimum of seven (7) storm events be sampled at both the Rio Grande North and Rio Grande South locations (refer to Figure 1, page 3). All Permit required samples have been obtained by the CMC, as well as the two (2) samples obtained in FY 2021 during Administrative Continuance; all CMC samples are summarized in Table 2 below.

No. of Storm Events Required to Sample	CMC-WSB MS4 Permit Required Samples per Season	FY (Date) Samples Obtained for CMC
1	#1 Wet Season	FY 2017 (8/10/2016)
2	#2 Wet Season	FY 2017 (9/12/2016)
3	#3 Wet Season	FY 2017 (9/21/2016)
4	#1 Dry Season	FY 2017 (11/21/2016)
5	#2 Dry Season	FY 2019 (3/13/2019)
6	Any Season	FY 2018 (Wet Season - 7/27/2017)
7	Any Season	FY 2018 (Wet Season - 9/27/2017)
Not Required	Wet Season	FY 2021 (10/28/2020)
Not Required	Dry Season	FY 2021 (4/28/2021)

Table 2: CMC Sample Summary Compared to WSB MS4 Permit Requirements

During WSB MS4 Permit Administrative Continuance, the CMC members chose to continue sampling within the Rio Grande to support their MS4 program needs and gather additional data in support of the future MS4 Permit compliance. This memo reports on the wet weather stormwater monitoring activity for the FY 2021 dry season (November 1, 2020 to June 30, 2021).

The CMC Excel database was updated with the FY 2021 dry season, wet weather monitoring data as results were received. The database contains sample location, sample date, analyses conducted, methods used, applicable surface water quality standards (WQS), WSB MS4 Permit required Minimum Qualification Levels (MQL) and results. Any unusable data will be identified.

CMC Dry Season, Wet Weather Stormwater Monitoring FY 2021 Dry Season (November 1, 2020 to June 30, 2021) August 20, 2021 Page 4

Summary of the CMC Sampling Plan

Sampling Parameters:

Samples from both the Rio Grande North and Rio Grande South monitoring locations were analyzed for the parameters defined in the EPA approved WSB MS4 CMC Monitoring Plan, May 5, 2016. The parameter list for both locations, which is intended to characterize stormwater discharges into the river, is as follows:

Total Suspended Solids (TSS) Total Dissolved Solids (TDS) Chemical Oxygen Demand (COD) Biological Oxygen Demand – 5-day (BOD₅) Dissolved Oxygen (DO) Oil & grease (N-Hexane Extractable Material) E. coli pН Total Kjeldahl Nitrogen (TKN) Nitrate plus Nitrite **Dissolved Phosphorus** Ammonia plus Organic Nitrogen (Nitrogen, Ammonia and Nitrogen, Total) Phosphorous (Total Phosphorous) Polychlorinated Biphenyls (PCBs - Method 1668A) Gross Alpha, adjusted Tetrahydrofuran Benzo(a)pyrene Benzo(b)fluoranthene (3, 4-Benzofluoranthene) Benzo(k)fluoranthene Chrysene Indeno (1,2,3-cd) Pyrene Dieldrin Pentachlorophenol Benzidine Benzo(a)anthracene Dibenzofuran Dibenzo(a, h)anthracene Chromium VI (Hexavalent) Copper - Dissolved Lead – Dissolved Bis(2-ethylhexyl) phthalate Conductivity Temperature

Hardness (as CaCO3) is also tested to allow dissolved metal results to be compared to the applicable WQSs. DO, pH, conductivity, and temperature are required by the WSB MS4 Permit to be analyzed in the field during sample collection, which was conducted by DBS&A, within 15 minutes of sample collection. All E. coli samples were submitted to the laboratory within eight (8) hours of collection in order to meet the specified hold time.

Sampling Locations:

The sampling locations are shown in Figure 1, page 3.

Rio Grande North – In-stream sampling within the Rio Grande was performed upstream of the Angostura Diversion Dam at the north end of the watershed. The location is upstream of all inputs from the Urban Area (UA) to the river and provides the background water conditions.

Rio Grande South – In-stream sampling within the Rio Grande was performed at the Isleta Bridge at the south end of the watershed. The location is downstream of all inputs from the UA to the river and provides the downstream water conditions. These locations have been accepted by EPA and New Mexico Environment Department (NMED) to meet the WSB MS4 Permit requirements in Part III.A.

During this FY 2021 dry season, an E. coli only sampling point was added within the Rio Grande at Alameda Blvd. This is the location of the NMED defined stream segment divide. This sample point was added after discussion with NMED in February 2017 regarding potential refinements to E. coli loading calculations.

Sample Collection:

As mentioned previously, sample collection for the CMC is being conducted by DBS&A (through a separate on-call contract) as well as by CMC members. Since BHI was not involved, this task and memo do not address the details of the methodologies regarding sampling, determining if an event was a qualifying storm event, or determining the timing of the hydrograph at the Rio Grande Alameda and Rio Grande South locations.

DBS&A provided BHI with their field notes and field sample data (temperature, DO, specific conductivity, and pH) for the FY 2021 dry season sampling. AMAFCA provided BHI the completed laboratory analysis reports from Hall Environmental Analysis Laboratory (HEAL) for this monitoring season.

Quality Assurance Project Plan (QAPP):

AMAFCA provided BHI with the Draft Quality Assurance Project Plan (QAPP) for the CMC dated June 14, 2016. DBS&A followed this QAPP during sample collection. BHI used this QAPP and the included standard operating procedures (SOPs) for the data verification and validation.

Monitoring Activity & Lab Analysis Summary

The list below provides a summary of the CMC comprehensive monitoring program activities completed for the FY 2021 dry season from November 2020 through June 2021. One (1) qualifying storm event was sampled and analyzed during the FY 2021 dry season.

April 28, 2021 – Qualifying Storm Event – Full Analysis of Samples. A sample was collected at the Rio Grande North location beginning at 11:40 a.m. on April 28 and sent to the laboratory for an E. coli test. The CMC determined that the storm event beginning April 28 was a qualifying storm event. A sample in the Rio Grande at Alameda Blvd. was obtained at 1:40 p.m. on April 28 and at 6:45 a.m. on April 29, and each sample was sent to the laboratory for an E. coli test. A Rio Grande South sample was collected beginning at 7:45 a.m. on April 29; the samples from the North (from April 28) and South locations were taken to HEAL for full parameter testing.

Stormwater Quality Database for CMC

As stated previously, there was one (1) qualifying storm event during the FY 2021 dry season, wet weather monitoring sampled by the CMC, which occurred April 28, 2021. DBS&A's field notes containing DO, pH, conductivity, and temperature measurements, as well as sampling comments have been received, and field results have been added to the database. Additionally, the HEAL reports for the corresponding time period have been received, added to the database, and are provided with this memo (Attachment 1). The laboratory reports attached to this memo have BHI added comments, including the field parameter measurements and other relevant notes related to the laboratory report.

Database Data Entry:

The CMC Excel database was updated with the FY 2021 dry season, wet weather monitoring data. The database contains sample locations, sample date, analyses conducted, methods used, applicable surface water quality standards (WQS), WSB MS4 Permit required Minimum Quantification Levels (MQL), and analysis results. The database was updated under this Task to include the Rio Grande at Alameda sample location. Applicable surface WQS found in New Mexico Administrative Code (NMAC) 20.6.4, as well as the Pueblo of Isleta WQS, are entered in the Excel database for comparison purposes with testing results. There is an indicator in the database to show if the monitoring results exceed the applicable surface WQS. An exceedance is not a violation of the WSB MS4 Permit, as the Permit does not have numeric discharge limitations. These ">WQ Standard" flags simply and quickly show the CMC members where the results of the lab data exceed the applicable WQS.

Water quality data was entered into the database upon receipt of the lab reports. All data entered into the database is initially denoted with a "P" to indicate that it is provisional and has not been through the verification and validation process yet. Full parameter analyses of qualifying storm events for both Rio Grande North and Rio Grande South locations were entered respectively into the database. In addition, the E. coli only samples from the Rio Grande Alameda location were also entered into the database.

Data Verification and Validation:

The HEAL analysis reports were provided to BHI by AMAFCA. The lab reports also contain the Chain of Custody for the submitted samples. Field data was requested by and provided to BHI by DBS&A. Data verification and validation (V&V) was conducted by BHI on all field notes, lab reports, and Chain of Custody documents in accordance with the CMC Water Quality Standard Operating Procedure (SOP) #2, which is part of the existing CMC QAPP, Draft June 14, 2016. These procedures are based on *EPA Guidance for Environmental Data Verification and Validation* (EPA, 2008).

As stated in the QAPP, the V&V process was completed by someone other than the one who entered the data into the database. The V&V process included use of the *Data Verification and Validation Worksheet* (provided in the QAPP). For this task, field data was verified first, confirming all field notes were complete. BHI handled field parameter questions directly with DBS&A. Chemical data verification began as soon as the lab reports were received, checking that all parameters were tested and looking for any obvious exceedances of WQS. Other steps listed on the *Data Verification and Validation Worksheet* were completed after all data from the laboratory was received and entered into the database. Sample blank results were reviewed to identify potential contamination during field processing or transport. Replica/duplicate samples were evaluated based on relative percent difference (as described in more detail in the QAPP) to determine the variability of the samples.

All CMC FY 2021 dry season data met the appropriate QA/QC requirements. If there were any data that did not meet the appropriate QA/QC requirements, it would have been assigned an appropriate laboratory qualifier or validation codes. A summary of validation codes is provided in the QAPP.

Once the V&V process was completed, the worksheets were signed. Copies of the V&V worksheets are provided with this memo (Attachment 2). In the database, data that was checked during the V&V process was then changed from being denoted with a "P" for provisional to a "V" for verified, and laboratory qualifiers were added, as needed.

CMC FY 2021 Dry Season Assessment and Evaluation of Monitoring Results

The EPA approved WSB MS4 CMC Monitoring Plan, May 5, 2016, has 33 parameters to monitor at the Rio Grande North and Rio Grande South monitoring locations. Of these 33 parameters, 15 parameters were not detected in the FY 2021 dry season samples at either the Rio Grande North or South locations. Refer to Table 3 for a list of the parameters that were not detected.

Parameters Not Detected									
Oil and Grease (N-Hexane Extractable Material)	Pentachlorophenol								
Ammonia	Benzidine								
Tetrahydrofuran	Benzo(a)anthracene								
Benzo(a)pyrene	Dibenzofuran								
Benzo(b)fluoranthene (3, 4-Benzofluoranthene)	Dibenzo(a,h)anthracene								
Benzo(k)fluoranthene	Chromium VI (Hexavalent)								
Chrysene	Dissolved Lead								
Indeno (1,2,3-cd) Pyrene	Bis(2-ethyhexyl) phthalate (other names:								
Dieldrin	Di(2-ethylhexyl) phthalate, DEHP)								

Table 3: Parameters Not DetectedCMC FY 2021 Dry Season Monitoring

For the remaining 18 parameters on the CMC monitoring parameter list, only two (2) parameters (E. coli and PCBs) had exceedances of the applicable surface WQS found in New Mexico Administrative Code (NMAC) 20.6.4 and the Pueblo of Isleta WQS during the FY 2021 dry season. These exceedances are summarized on Table 1, page 1, and discussed below in further detail.

E. coli:

The E. coli results collected during the FY 2021 dry season are summarized in Table 4.

Date – Rio Grande Location	E. coli Results (CFU/100 ml)
April 28, 2021 – North	8.5
April 28, 2021 – Alameda	72.8
April 29, 2021 – Alameda	31
April 29, 2021 – South	1,573

Table 4: E. coli Results CMC FY 2021 Dry Season Monitoring

At the Rio Grande North location (upstream of the Albuquerque UA, at the Angostura Diversion Dam), one (1) sample was collected and tested for E. coli and the lab result was well below the primary contact-single sample Pueblo of Isleta and Pueblo of Sandia WQS (88 CFU/100 mL) and the primary contact-single sample NMAC WQS (410 CFU/100 ml). At the Rio Grande South location (downstream of the MS4 UA), one (1) sample was collected and tested for E. coli and this sample had a result that exceeded the Pueblo of Isleta and Pueblo of Sandia WQS (88 CFU/100 mL) and also exceeded the primary contact-single sample NMAC WQS (410 CFU/100 mL).

In addition, the CMC added an E. coli sample point in the Rio Grande at Alameda. This added analysis point was based on discussions with NMED in February 2017 on collecting actual data at the stream segment divide verses using an area percentage (as defined in the TMDL) for E. coli loading calculations. For the FY 2021 dry season storm event, two (2) samples were collected at the Alameda location and both lab results were below the primary contact-single sample Pueblo of Isleta and Pueblo of Sandia WQS (88 CFU/100 mL).

Monthly geometric mean values were not calculated and compared to applicable WQS because the CMC had only one (1) to two (2) samples per location. As a reminder, in January 2017 the CMC members clarified with NMED that the units MPN/100 mL and CFU/100 mL are considered to be interchangeable for the purposes of this stormwater quality monitoring reporting. The New Mexico and Pueblo WQS for E. coli are currently in units of CFU/100 mL while the lab reports are typically in units of MPN/100mL. The graph presented in this section uses units of CFU/100 mL to be consistent with the WQS units. Refer to Figure 2 for a graphical representation of E. coli results from April 2021.

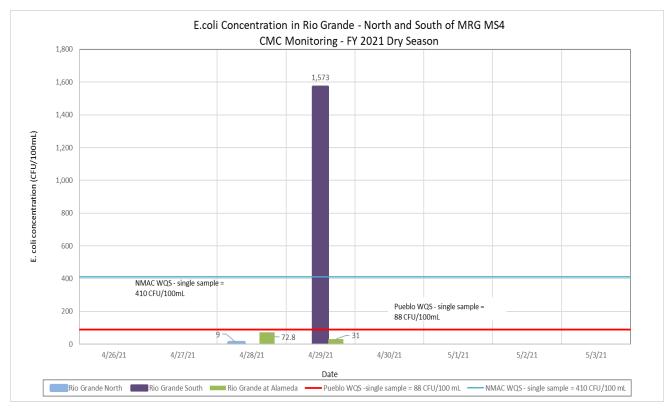
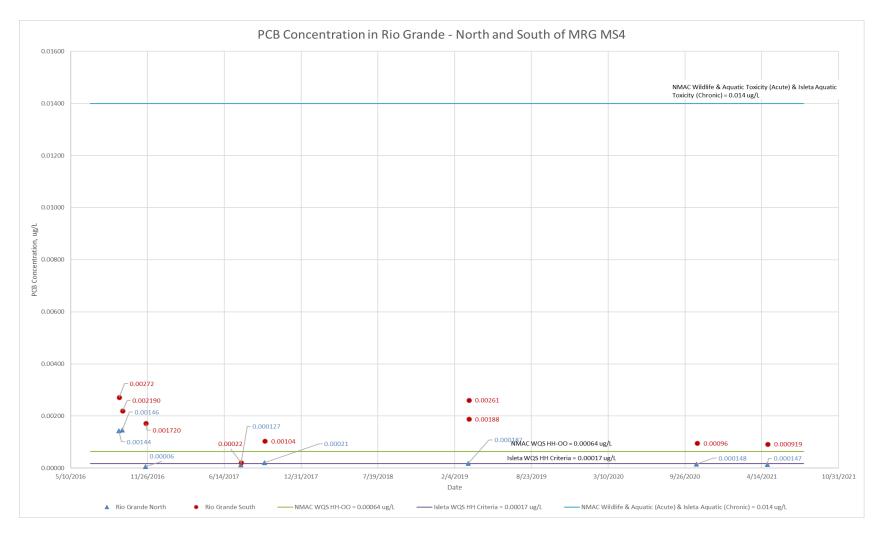
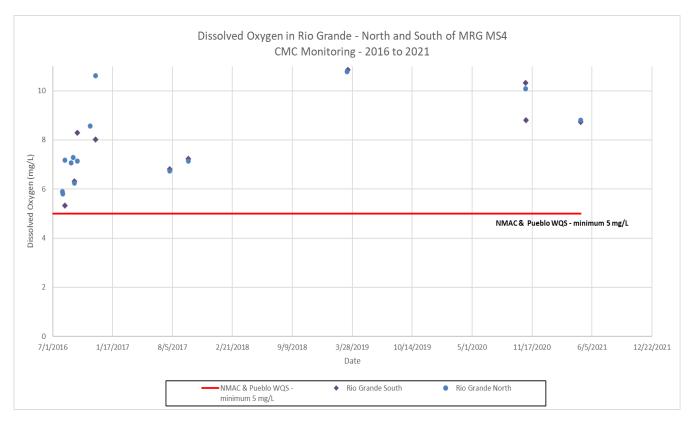
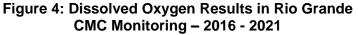



Figure 2: E. coli Results in Rio Grande CMC Monitoring – FY 2021 Dry Season

PCBs:

There are multiple surface WQS values listed for PCBs in both the Pueblo of Isleta and the State of New Mexico standards for the various designated uses. The PCBs measured in samples collected from the Rio Grande during the FY 2021 dry season stormwater event were all below the minimum quantification level (MQL) established in EPA standards for the MS4 NPDES Permit (Appendix F, 0.2 ug/L for PCBs). The PCB results were also well below the New Mexico Surface WQS and Pueblo of Isleta Surface WQS for designated uses including drinking water (0.5 ug/L) and wildlife habitat, acute aquatic life, and chronic aquatic life (0.014 ug/L). However, the CMC sample from the Rio Grande South location was above the Pueblo of Isleta human health criteria (based on fish consumption only) WQS for surface waters. The human health-organism only criterion is based upon human consumption of fish and other aquatic life that bioaccumulate contaminants over time. The PCB results from 2016 through 2021 are shown in Figure 3 relative to several of the WQSs for PCBs.




Figure 3: PCB Monitoring Results in Rio Grande CMC Monitoring – 2016 - 2021

Dissolved Oxygen and Temperature:

Two (2) of the water quality parameters are specifically worth mentioning in this memo because they are listed in the WSB MS4 Permit, Part I.C.1 – Special Conditions: dissolved oxygen and temperature. These parameters did not have any surface water quality exceedances during the FY 2021 dry season sampling.

Dissolved oxygen is a water quality concern in the Rio Grande if it is below 5 mg/L. None of the samples taken from the Rio Grande during the FY 2021 dry season monitoring had dissolved oxygen values below 5 mg/L. This provides the MS4s with specific monitoring data showing that stormwater did not cause or contribute to exceedances of applicable dissolved oxygen water quality standards in the Rio Grande from any of the CMC samples from 2016 to 2021. Refer to Figure 4 for CMC dissolved oxygen results and comparison to applicable WQS.

Temperature is listed in the WSB MS4 Permit as a special condition (currently only applicable to the City of Albuquerque and AMAFCA). Past data submitted to EPA and NMED by the MS4 permittees have proven that stormwater discharges into the Rio Grande are not raising the Rio Grande temperature above the WQS. The data collected during this FY 2021 dry season monitoring also supports this conclusion. All the temperature field readings taken in the Rio Grande during the CMC FY 2021 dry season were below 32.2°C (90°F) - the WQS for the State of

New Mexico and for the Isleta and Sandia Pueblos. Refer to Figure 5 for temperature results and comparison to applicable WQS for all CMC samples taken upstream and downstream of the MRG MS4 area from 2016 to 2021.

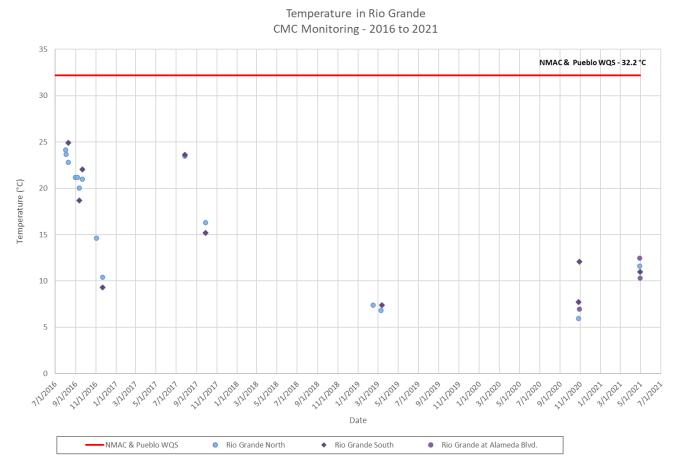


Figure 5: Temperature Monitoring Results in Rio Grande CMC Monitoring – 2016 - 2021

CMC FY 2021 Dry Season E. coli Loading Calculations and Waste Load Allocation (WLA)

Related to assessing the stormwater results, BHI has calculated the E. coli loading and compared it to the aggregate Total Maximum Daily Load (TMDL) Waste Load Allocation (WLA) for the CMC group. A TMDL is the maximum amount of a pollutant (E. coli in this case) that a water body (Rio Grande) can assimilate on a daily basis without violating applicable surface WQS. The total TMDL for a stream segment consists of the multiple WLA for point sources, non-point sources, and natural sources, plus a margin of safety. The CMC MS4 allotted WLA was determined in the EPA Approved, Total Maximum Daily Load for the Middle Rio Grande Watershed, June 30, 2010, and subsequent communications with NMED. The WLA varies by flow condition in the Rio Grande and by stream segment.

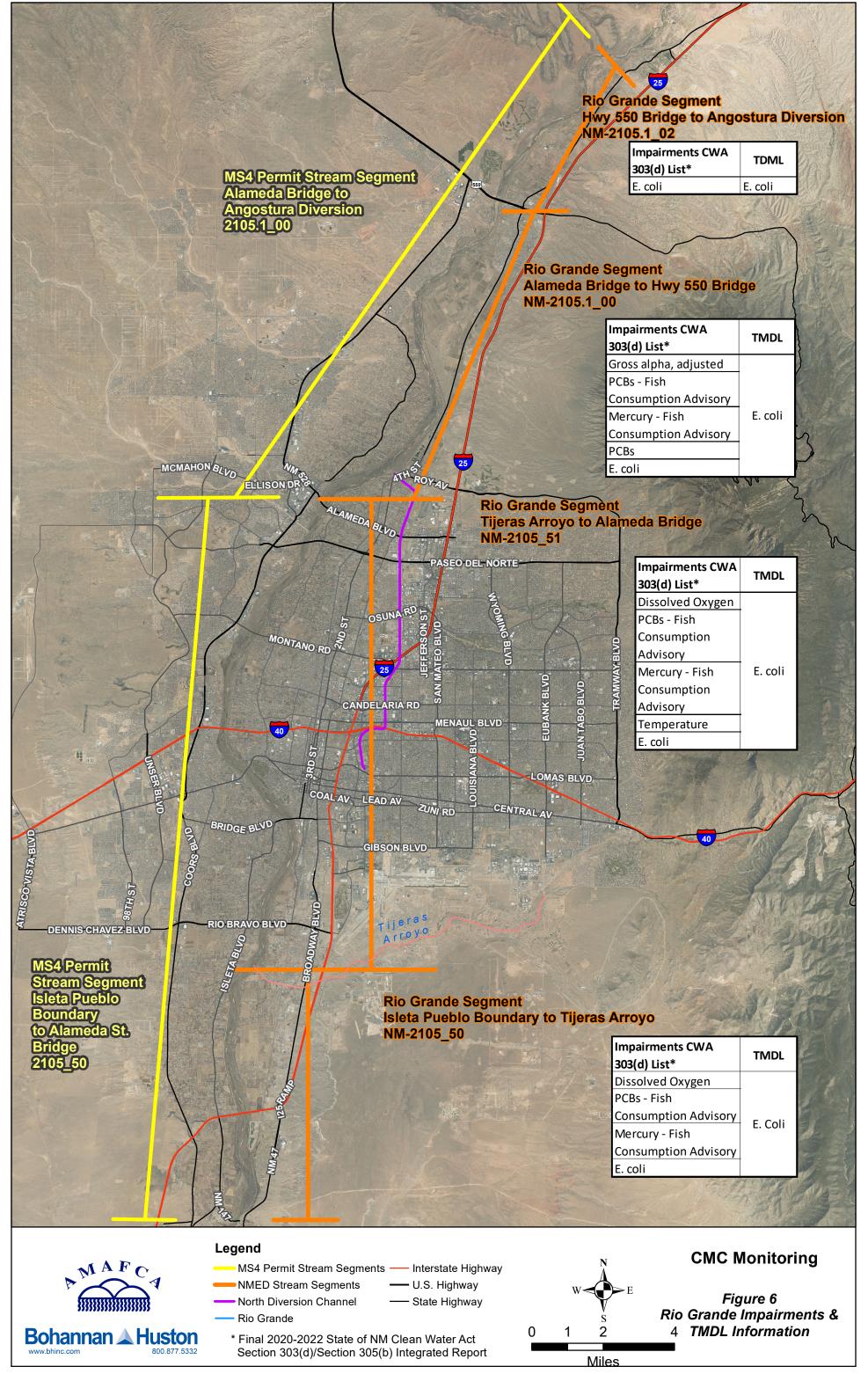
E. coli loading calculations and comparison to the WLA follows the WSB MS4 Permit requirements in *Discharges to Water Quality Impaired Water Bodies with an Approved TMDL*, Part I.C.2.b.(i).(c).B, Appendix B-Total Maximum Daily Loads (TMDLs) Tables of the WSB MS4 Permit, and the NMED guidance provided to the CMC. Attached to this memo is the WLA Calculation spreadsheet which steps through the E. coli loading calculations and assumptions comparing the calculated E. coli loading to the CMC aggregate WLA defined by NMED.

There are two (2) stream segments defined in the WSB MS4 Permit (Appendix B): Isleta Pueblo Boundary to Alameda Street Bridge (Stream Segment 2105_50) and Non-Pueblo Alameda Bridge to Angostura Diversion (Stream Segment 2105.1_00). These stream segments differ from NMED's current stream segments defined in the 2020-2022 State of New Mexico Clean Water Act Section 303(d)/Section 305(b) Integrated Report, December 8, 2020. NMED currently has four (4) stream segments instead of the two (2) WSB MS4 stream segments. These various stream segment designations are shown in Figure 6, page 15.

The NMED 303(d)/305(b) 2020-2022 Integrated Report tables show the most recent assessment results, and currently all segments of the Rio Grande (Isleta to Angostura Diversion) are impaired for E. coli and have a TMDL for E. coli.

The E. coli daily loading associated with the CMC group and comparison to the NMED WLA was completed for the one (1) qualifying dry season storm event – April 28-29, 2021. For this event, the CMC obtained an E. coli sample in the Rio Grande at Alameda and used this to calculate the E. coli loading for the two (2) river segments. Refer to Table 5 for a summary of the WLA comparison results. A spreadsheet that provides the detailed WLA calculations is attached to this memo.

Date / Stream Segment	Daily Mean Flow (cfs)	Flow Conditions (cfs) range defined by NMED	CMC Daily E. coli Loading (CFU/day)	NMED WLA for CMC for Stream Segment and Flow Conditions (CFU/day)	Loading Compared to WLA Potential Exceedance or Acceptable
April 28-29, 202 Rio Grande North Rio Grande at Ala Rio Grande Sout	n E. coli Co ameda E. c	oli Concentration	n = 72.8 CFU/1	00 mL and 31 CFU ոL	/100 mL
Alameda to Angostura	872	Mid		No Value	WLA Acceptable
Isleta to Alameda	931	Moist	2.02E+12	6.29E+10	WLA Potential Exceedance


Table 5: Summary of CMC E. Coli Loading Compared to WLA for the CMC

As Table 5 illustrates, the calculated E. coli loading for the April 28, 2021 storm event for the northern segment (Alameda to Angostura) is reported as an acceptable WLA. NMED has not set a TMDL or associated WLA values for the Alameda to Angostura stream segment of the Middle Rio Grande for mid-flow conditions (647 to 992 cfs) because there

> were not observed E. coli exceedances during this flow regime in the data used to develop the TMDL. Therefore, when a qualifying storm event is monitored during mid-flow regime conditions, like the April 28-29, 2021 event, in the Alameda to Angostura stream segment, the CMC's WLA will never be in exceedance since there is not set TMDL. This analysis used the mid-point E. coli sample result obtained in the Rio Grande at Alameda. The E. coli loading for the southern segment for the April 28, 2021 event potentially exceeded the CMC allocated WLA.

The WSB MS4 Permit implies that the WLA is a measurable goal for the MS4s related to E. coli. Based on extensive review of the EPA Approved, Total Maximum Daily Load (TMDL) for the Middle Rio Grande Watershed, June 30, 2010, this seems to be an unattainable goal for MS4s. On page 40, the 2010 TMDL Report states, "It is important to remember that the TMDL is a planning tool to be used to achieve water quality standard. Meeting the calculated TMDL may be a difficult objective." The TMDL/WLA was calculated by NMED to meet the Pueblo (Sandia and Isleta) geometric mean maximum of 47 CFU/100 mL, which was done to be "protective of downstream waters" and "to provide an implicit margin of safety (MOS)." A single grab sample E. coli result meeting this very low geometric means WQS will be very difficult for the MS4s to obtain.

The CMC members discussed the difficulty of using the WLA as a measurable goal with NMED on February 1, 2017. NMED explained that exceeding the WLA does not trigger enforcement. However, NMED strongly encouraged the MS4s to document what they are doing once they realize the WLA is potentially exceeded. The meeting on February 1, 2017, and the CMC discussion with NMED on February 16, 2017, demonstrate CMC members are working toward understanding the WLA. In addition, the CMC members began implementing a refinement to the sampling plan discussed with NMED by obtaining an E. coli sample in the Rio Grande at Alameda effective the FY 2018 dry season, as feasible. This demonstrates that the CMC is continuing to investigate the potential exceedances and make improvements to monitor E. coli in the Rio Grande.

P:\20210236\WR\Reports\Preliminary & Draft\Figures\MXDs\Figure6-MS4_TMDLStreamSegments_2021_0416.mxd Author: SThompson

August 2021

Data Entry for Discharge Monitoring Reports

The WSB MS4 Permit entered Administrative Continuance in December 2019 when EPA Region 6 did not issue a new MS4 Permit before the current MS4 Permit's expiration date. Until a new MS4 Permit is issued, there are no compliance monitoring requirements for the CMC in the Rio Grande. As identified in the CMC Monitoring Plan, the WSB MS4 Permit required a minimum of seven (7) storm events be sampled at both the Rio Grande North and Rio Grande South locations. All MS4 Permit required samples have been obtained by the CMC and verified stormwater quality data from these required events have been submitted to the EPA using electronic Discharge Monitoring Report (NetDMR) forms prior to this fiscal year. Data from the NetDMRs are uploaded to a comprehensive nation-wide database that contains discharge data for facilities and other point sources that discharge directly to receiving streams.

For this Task, BHI has not completed any data entry related to the EPA NetDMRs for FY 2021. For AMAFCA and the CMC members that have delegated NetDMR entry to AMAFCA through signed Memorandums of Agreement, there are currently no open DMRs for this MS4 Permit in the EPA NetDMR system. This memo contains all of the lab data that would be entered into the NetDMR, if there were open and required forms – refer to Attachment 1.

Conclusions and Planning

During the FY 2021 dry season (November 1, 2020 to June 30, 2021), one (1) qualifying stormwater sample was obtained by the CMC. Lab results were received, and this data has been entered into the CMC Excel database. A summary of this data is provided in Attachment 1. The lab data entered is marked in the spreadsheet as "V" (verified), and data V&V (verification and validation) has been completed (refer to Attachment 2).

To summarize, monitoring results and E. coli loading calculations for the FY 2021 dry season show that:

- The WSB MS4 Permit entered Administrative Continuance in December 2019 when U.S. Environmental Protection Agency (EPA) Region 6 did not issue a new MS4 Permit before the current MS4 Permit's expiration date. Until a new MS4 Permit is issued, there are no compliance monitoring requirements for the CMC in the Rio Grande. All MS4 Permit required samples have been obtained by the CMC, as well as the two (2) samples obtained in FY 2021 (one for the wet season and one for the dry season), as reported in this memo, during Administrative Continuance.
- For the FY 2021 dry season, 15 of the 33 parameters tested were not detected in any of the Rio Grande North or South samples.
- Several key parameters all met the applicable WQS, as they have for all the CMC samples to date:
 - \circ All dissolved oxygen results were greater than 5 mg/L (minimum WQS).
 - All temperature results were less than 32.2°C (maximum WQS).
- The PCB results were below the New Mexico Surface WQS and Pueblo of Isleta Surface WQS for designated uses including drinking water, wildlife habitat, acute aquatic life, and chronic aquatic life. However, the Rio Grande South CMC sample from April 29, 2021 was above the Pueblo of Isleta human health criteria (based on fish consumption only) WQS for surface waters.

- The calculated E. coli loading for the April 28, 2021 storm event for the northern segment (Alameda to Angostura) is reported as an acceptable WLA. NMED has not set a TMDL or associated WLA values for the Alameda to Angostura stream segment of the Middle Rio Grande for mid-flow conditions (647 to 992 cfs) because there were no observed E. coli exceedances during this flow regime in the data used to develop the TMDL. Therefore, when a qualifying storm event is monitored during mid-flow regime conditions, like the April 28-29, 2021 event in the Alameda to Angostura stream segment, the CMC's WLA will never be in exceedance since there is not a set TMDL. This analysis used the mid-point E. coli sample result obtained in the Rio Grande at Alameda. The E. coli loading for the southern segment for the April 28, 2021 event potentially exceeded the CMC allocated WLA.
 - Sources for the E. coli loading measured in the river are not solely attributable to the CMC MS4 members; the E. coli loading calculations serve to provide a reasonable estimate of the CMC contribution to the measured E. coli loading.
 - This sampling and calculation approach is only an estimate of the CMC contribution to the E. coli loading which is why the term "potential exceedance" is used.
 - The in-stream data does not provide the concentration of E. coli contributed by only the CMC MS4s or any of the other potential sources. By using this percentage calculation approach, if other contributors are in exceedance of the WLA, then the CMC will likely also be in exceedance since this approach relies on a percentage of a total.

This memo completes the FY 2021 CMC reporting requirements. This memo, along with the CMC Wet Season, Wet Weather Stormwater Monitoring Data Verification, Analysis Results Database, and Reporting Memo dated April 22, 2021, Excel CMC Spreadsheet, and E. coli Loading and Comparison to Waste Load Allocation (WLA) Excel Spreadsheet provide the CMC members with monitoring data to support each member's reporting requirements to EPA. For this Task, BHI has not completed any data entry related to the EPA NetDMRs for FY 2021. For AMAFCA and the CMC members that have delegated NetDMR entry to AMAFCA through signed Memorandums of Agreement, there are currently no open DMRs for this MS4 Permit in the EPA NetDMR system. This memo contains all of the lab data that would be entered into the NetDMR, if there were open and required forms – refer to Attachment 1.

SG/ab

Attachments:

- Attachment 1 FY 2021 Lab Data Summary, Hall Environmental Analysis Laboratory Reports with BHI Notes for FY 2021 Dry Season, and DBS&A Field Data for FY 2021 Dry Season
- Attachment 2 FY 2021 Dry Season Completed Data Verification and Validation (V&V) Forms

Spreadsheets Included Separately:

- E. coli Loading and Comparison to Waste Load Allocation (WLA) Excel Spreadsheet
- Excel CMC Spreadsheet with FY 2021 Dry Season Stormwater Quality Monitoring Results

ATTACHMENT 1

FY 2021 LAB DATA SUMMARY, HALL ENVIRONMENTAL ANALYSIS LABORATORY REPORTS WITH BHI NOTES FOR FY 2021 DRY SEASON, AND DBS&A FIELD DATA FOR FY 2021 DRY SEASON

Date: August 18, 2021

Summary of Lab Results - FY 2021 Wet & Dry Season

		Rio Grande - Nor	rth - At Angostura	Dam						Rio Grande - So	uth - At Isleta Dam						
Parameter	Permit Required	Provisional or Verified	2021 CMC SAMPLE - EXTRA NORTH Collection Date 10/26/2020 Wet Season Sample	Qualifier	Check compared to Water Quality Criterion	Provisional or Verified	2021 CMC SAMPLE - EXTRA NORTH Collection Date 4/28/2021 Dry Season Sample	Qualifier	Check compared to Water Quality Criterion	Provisional or Verified	2021 CMC SAMPLE - EXTRA SOUTH Collection Date 10/28/2020 Wet Season Sample	Qualifier	Check compared to Water Quality Criterion	Provisional or Verified	2021 CMC SAMPLE - EXTRA SOUTH Collection Date 4/29/2021 Dry Season Sample	Qualifier	Check compared to Water Quality Criterion
Total Suspended Solids (TSS)	Units mg/L	v	18	н		v	4			v	32			v	160		
Total Dissolved Solids (TDS)	mg/L	v	234		ОК	v	207		ОК	v	348		ОК	v	234	D	ОК
Chemical Oxygen Demand (COD)	mg/L	v	ND			v	ND			v	ND			v	48.2		
Biochemical Oxygen Demand (BOD ₅)	mg/L	v	ND			v	<2.0			v	2.3	н		v	2.8		
Dissolved Oxygen (DO)	mg/L	v	10.08		ОК	v	8.81		ОК	v	8.81		ок	v	8.73		ОК
Oil and Grease (N-Hexane Extractable Material)	mg/L	v	ND		ОК	v	ND		ОК	v	ND		ОК	v	ND		ОК
E. coli	MPN (CFU/100 mL)	v	141		>WQ Standard	v	8.5		ОК	v	2,420		>WQ Standard	v	1,573		>WQ Standard
рН	S.U.	v	8.49		ОК	v	7.61		ОК	v	8.11		ОК	v	7.69		ОК
Total Kjedahl Nitrogen (TKN)	mg/L	v	ND			v	0.42	1		v	0.7	1	-	v	0.56	L	
Nitrate plus Nitrite Dissolved Phosphorous	mg/L mg/L	v v	0.34	Ţ	ОК	v v	ND 0.011		ОК	v v	0.48		ОК	v	0.59		ОК
Ammonia (mg/L as N)	mg/L	v	ND		ОК	v	ND		ОК	v	ND		ОК	v	ND		ОК
Total Nitrogen	mg/L	v	0.34	1	ОК	v	0.42	1	ОК	v	2.00	1	ОК	v	1.15	L	ОК
Total Phosphorous	mg/L	v	ND			v	0.026			v	0.63	D		v	0.46	D	
PCBS (Method 1668A - sum of all congeners)	μg/L	v	0.000148	J	ОК	v	0.000147	J	ОК	v	0.000956	J	>WQ Standard	V	0.000919	I	>WQ Standard
Gross Alpha, Adjusted	pCi/L	v	0 ± NA		ОК	v	2.96	Note - Gross Alph was reported, no adjusted gross alpha		v	3.03 ± NA		ок	v	4.32	Note - Gross Alph: was reported, not adjusted gross alpha	
Tetrahydrofuran	µg/L	v	ND			v	ND			v	ND		-	v	ND		
Benzo(a)pyrene	µg/L	v	ND		ок	v	ND		ОК	v	ND		ок	v	ND		ОК
Benzo[b]fluoranthene (other name: 3,4- Benzofluoranthene)	μg/L	v	ND		ОК	v	ND		ОК	v	ND		ок	v	ND		ОК
Benzo(k)fluoranthene	μg/L	v	ND		ОК	v	ND		ОК	v	ND		ок	v	ND		ОК
Chrysene	μg/L	v	ND		ОК	v	ND		ОК	v	ND		ОК	v	ND		ОК
Indeno(1,2,3-cd)Pyrene	μg/L	v	ND		ОК	v	ND		ОК	v	ND		ОК	v	ND		ОК
Dieldrin	µg/L	v	ND	Н	ОК	v	ND		ОК	v	ND		ок	v	ND		ОК
Pentachlorophenol	μg/L	v	ND		ОК	Р	ND		ОК	v	ND		ОК	v	ND		ОК
Benzidine	μg/L	v	ND		ОК	v	ND		ОК	v	ND		ОК	v	ND		ОК
Benzo(a)anthracene	μg/L	v	ND		ОК	v	ND		ОК	v	ND		ОК	v	ND		ОК
Dibenzofuran	μg/L	v	ND			v	ND			v	ND		-	v	ND		
Dibenz(a,h)anthracene	μg/L	v	ND		ОК	v	ND		ОК	v	ND		ОК	v	ND		ОК
Chromium VI (Hexavalent)	μg/L	v	ND		ОК	v	ND		ОК	v	ND		ОК	v	ND		ОК
Dissolved Copper	μg/L	v	0.62	J	ок	v	0.57	L	ок	v	0.85	J	ок	v	0.87	J	ок
Dissolved Lead	μg/L	v	ND		ок	v	ND		ОК	v	0.051	J	ок	v	ND		ок
Bis (2-ethyhexyl) Phthalate (other names: Di(2- ethylhexly)phthalate, DEHP)	μg/L	v	ND		ОК	v	ND		ОК	v	ND		ок	v	ND		ОК
Conductivity	umhos/cm	v	385			v	476			v	589		-	v	396		
Temperature	°C	v	5.94		ОК	v	11.59		ОК	v	12.06		ОК	v	10.96		ОК
Hardness (as CaCO ₃)	mg/L	v	150			v	130			v	160			v	160		

 Data Verification/Validation and Qualifier Notes:

 (R) The sample results are unusable because certain criteria were not met. The analyte may or may not be present in the sample.

 (H) Sample holding time exceeded.

 (J) The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

 (D) Sample was diluted by Lab due to matrix

 (U) Analyte was analyzed for, but not detected above the specified detection limit.

 Notes:

 1. Wet Season monitoring period - July 1 to October 31 and Dry Season monitoring period - November 1 to June 30 according to the Watershed Based MS4 Permit NMR04A000.

 20.6.4.105; For a mean monthly flow of 100 cfs, monthly average

 concentration for TD5 1,500 mg/l or less, sulfate 500 mg/L or less, and

 3. Aquatic life criteria for metals are expressed as a function of total

 4. According to NMAC 20.6.4, E. coli bacteria for Primary Contact - monthly

 5. Metar quality criterion for metals is based on dissolved metals, NMAC

 20.6.4.9010 and individual sample results compared to acute toxicity values.

 6. HEAL lab method: SM 9223B Fecal Indicator. Note - lab method for units

 of MPN/100 ml, lab report uses units CFU/100 ml, for this analysis assuming

ND - analyte not detected above the laboratory method detection limit NA - not analyzed Hatching also indicates that parameter was not analyzed

National recommended WQ criteria Human Health https://www.epa.gov/wqc/national-recommended-water-quality-criteria-human-health-criteria-table

May 03, 2021

Patrick Chavez AMAFCA 2600 Prospect Ave NE Albuquerque, NM 87107 TEL: (505) 884-2215 FAX: April 28, 2021 - Rio Grande North and Alameda E. coli Lab Results

RE: CMC

OrderNo.: 2104C04

Dear Patrick Chavez:

Hall Environmental Analysis Laboratory received 2 sample(s) on 4/28/2021 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Field Parameters <u>Rio Grande North</u>-Temp = 11.59°C pH = 7.61 Conductivity (uS/cm=umho/cm) = 476 Dissolved Oxygen (mg/L) = 8.81 <u>Rio Grande Alameda</u>-Temp = 10.33 °C pH = 7.31 Conductivity (uS/cm=umho/cm) = 342 Dissolved Oxygen (mg/L) = 8.76

Analytical Report

Lab Order: 2104C04

Hall Environ	mental Analysis Lab	ooratory, Inc	2.			Ι	Date Reported: 5/	3/2021	
	AMAFCA CMC				L	.ab ()rder: 210	4C04	
Lab ID: Client Sample ID:	2104C04-001 RG North-20210428		C	ollecti			28/2021 12:30:00 QUEOUS) PM	
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	Bat	tch ID
SM 9223B FECAL E. Coli	INDICATOR: E. COLI MPN	<mark>8.5</mark>	1.000		MPN/10	00 1	A 4/29/2021 5:10:(nalyst: 00 PM	KMN 59692
Lab ID:	2104C04-002		C	ollecti	on Date	e: 4/2	28/2021 1:40:00	PM	
Client Sample ID:	RG Alameda-20210428				Matrix	к: А(QUEOUS		
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	Bat	tch ID
SM 9223B FECAL	INDICATOR: E. COLI MPN						Ą	nalyst:	KMN
E. Coli		72.8	1.000		MPN/10	00 1	4/29/2021 5:10:0	00 PM	59692

Hall Environmental Analysis Laboratory. Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

Е Value above quantitation range

Analyte detected in the associated Method Blank

- Analyte detected below quantitation limits J
- Sample pH Not In Range

P Sample pH Not RL Reporting Limit

в

Page 1 of 1

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Albi TEL: 505-345-3975 Website: clients.ha	49(iquero FAX:	01 Hawkins N que, NM 8710 505-345-410	7E 99 San 97	nple Log-In Ch	eck List
Client Name: AMAFCA	Work Order Number:	210	4C04		RcptNo: 1	anari kunsi kunsik nitrasti Adarikan Kulanka sa
Received By: Scott Anderson Completed By: Sean Livingston Reviewed By: SPA 争・28・21	4/28/2021 3:50:00 PM 4/28/2021 3:55:22 PM @ 16:25			SPL	John	
Chain of Custody1. Is Chain of Custody complete?2. How was the sample delivered?		Yes <u>Clie</u>	✓	No 🗌	Not Present	
Log In 3. Was an attempt made to cool the samples?		Yes	\checkmark	No 🗌	NA 🗌	
4. Were all samples received at a temperature5. Sample(s) in proper container(s)?	of >0° C to 6.0°C <u>Samples were</u>	Yes colle Yes	cted the sa	No 🗹 me day and No 🗌	NA 🗌 I chilled.	
6. Sufficient sample volume for indicated test(s)?	Yes	\checkmark	No 🗌		
7. Are samples (except VOA and ONG) proper	y preserved?	Yes	\checkmark	No 🗌		
8. Was preservative added to bottles?		Yes		No 🗹	NA 🗌	
9. Received at least 1 vial with headspace <1/4	" for AQ VOA?	Yes		No 🗌	NA 🗸	
10. Were any sample containers received broke		Yes		No 🗹	# of preserved bottles checked	
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes	\checkmark	No 🗌	for pH: (<2 or ≥	2 unless noted)
12. Are matrices correctly identified on Chain of	Custody?	Yes		No 🗌	Adjusted?	
13. Is it clear what analyses were requested?		Yes		No 🗌	Charling hum an	11-1-
14. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes	\checkmark	No 🗌	Checked by: Cl	1 9/08/2
<u>Special Handling (if applicable)</u> 15. Was client notified of all discrepancies with	this order?	Yes		No 🗌	NA 🗹	
Person Notified: By Whom: Regarding: Client Instructions:	Date: Via:] eM	ail 🗌 Pho	ne 🗌 Fax	In Person	
16. Additional remarks:						
17. <u>Cooler Information</u> Cooler No Temp °C Condition S 1 10.1 Good	eal Intact Seal No S	eal D	ate Si	gned By		

C	hain	-of-Cu	ustody Record	Turn-Around				-													
Client:	Am	AFCA	-	Standard	l											12201253				-	
	1			Project Nam					100									KA	ATC	JK	. T
Mailing	Adreed			CMC			www.hallenvironmental.com														
waning	Address	ö.			metrik.		4901 Hawkins NE - Albuquerque, NM 87109														
				Project #:			Tel. 505-345-3975 Fax 505-345-4107														
Phone	#:				1			Analysis Request													
email o	r Fax#:	pchaw	rze AMAGA, org	Project Mana	Project Manager:			Ô					SO4			nt)	-15				
QA/QC	Package:)	Patack	Portrick Chavez			MR	°.		٨S	in i La i	4, S			Iasc	tout	2	ing s		
🖾 Star	dard	D. D	□ Level 4 (Full Validation)	FOTTICK CHOWEZ				TPH:8015D(GRO / DRO / MRO)	PCB's		8270SIMS		PO4,			Total Coliform (Present/Absent)		when			
Accred	itation:	🗆 Az Co	ompliance	Sampler: L	Sampler: Cjohannison - DBSA				8081 Pesticides/8082	÷	827		NO_2 ,	i di t	- 3917	ese	Attal at Carl	200			
	AC	Other		On Ice: ZYes 🗆 No				02	s/8	504	or	s			(YC	(Pre	The second	-CNUME			
D EDD	(Type)		T	# of Coolers:	# of Coolers: l				cide	po	310	etal	NO	-	i-V0	L	7	S			
				Cooler Temp(including CF): 10,3-0.2-10, (°C)				150	esti	leth	y 8	8	Br, NO ₃ ,	AO/	3em	olifo	1T				
				Container	Preservative	HEAL No.	BTEX / MTBE	1:80	- L	≥) m	4s b	A	ш ⁻	0	0 (S	C	60	Ecoli	К на 201		
Date	Time	Matrix	Sample Name	Type and #	Type	2104604	BTE	ТР	808	EDB (Method 504.1)	PAHs by 8310 or	RCRA 8 Metals	CI, F,	8260 (VOA)	8270 (Semi-VOA)	Tota	S	U	2		
4.28.21	1230	AQ	RGN0 th-20210428	1									_					×	·		
10	1340	AQ	RG Alame da - 20210428	1						_					- 24			×	_		
													61		-81						
										_			1.1							+	+
												_	_	-	-						
										-			-	1.11							
						5							_						<u></u>		
									_	_		_				7. 41			+		
		10 11 1											_						-+		
										-	1	100	-			1					
						8 A Bar				-						13			+		_
												-	_								_
Date:	Time:	Relinquish	ed by:	Received by:	Via:	Date Time	Rem	narks					_		14 14	1.80					
4-25-24	1550	On		100 C		4.28.21 15:50															
Date:	Time:	Relinquish	ed by:	Received by:	Via:	Date Time															

June 01, 2021

Patrick Chavez

AMAFCA 2600 Prospect Ave NE Albuquerque, NM 87107 TEL: (505) 884-2215 FAX Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

April 28, 2021 - Rio Grande North Full Lab Results and April 29, 2021 -Rio Grande South Full Lab Results

RE: CMC

OrderNo.: 2104C54

Dear Patrick Chavez:

Hall Environmental Analysis Laboratory received 6 sample(s) on 4/29/2021 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andig

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Field Parameters <u>Rio Grande North</u>-Temp = 11.59° C pH = 7.61 Conductivity (uS/cm=umho/cm) = 476 Dissolved Oxygen (mg/L) = 8.81 <u>Rio Grande South</u>-Temp = 10.96° C pH = 7.69 Conductivity (uS/cm=umho/cm) = 396 Dissolved Oxygen (mg/L) = 8.73

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2104C54 Date Reported: 6/1/2021

CLIENT: AMAFCA			Client	Sampl	e ID: <mark>RG</mark>	-Nor	t <mark>h</mark> -20210428	
Project: CMC			Coll	ection I	Date: 4/2	8/202	21 12:30:00 PM	
Lab ID: 2104C54-001	Matrix:	AQUEOU	S Ree	ceived I	Date: 4/2	9/202	21 9:48:00 AM	
Analyses	Result	MDI	L RL	Qual	Units	DF	Date Analyzed E	atch ID
EPA METHOD 8081: PESTICIDES	3						Analyst: LSB	
Dieldrin	ND	0.040	0.10		µg/L	1	5/11/2021 12:58:38 PM	59722
Surr: Decachlorobiphenyl	102	0	41.7-129		%Rec	1	5/11/2021 12:58:38 PM	
Surr: Tetrachloro-m-xylene	70.1	0	31.8-88.5		%Rec	1	5/11/2021 12:58:38 PM	59722
EPA METHOD 300.0: ANIONS							Analyst: JMT	
Nitrogen, Nitrite (As N)	ND	0.070	0.50		mg/L	5	4/29/2021 7:26:48 PM	R77061
Nitrogen, Nitrate (As N)	ND	0.10	0.50		mg/L	5	4/29/2021 7:26:48 PM	R77061
EPA METHOD 200.7: METALS							Analyst: ELS	
Calcium	40	0.11	1.0		mg/L	1	5/4/2021 11:14:26 AM	59770
Chromium	ND	0.0021	0.0060		mg/L	1	5/4/2021 11:14:26 AM	59770
Magnesium	7.6	0.067	1.0		mg/L	1	5/4/2021 11:14:26 AM	59770
EPA 200.8: DISSOLVED METALS							Analyst: bcv	
Copper	0.00057	0.00013	0.0010	J	mg/L	1	4/30/2021 7:10:50 PM	B77076
Lead	ND	0.000034	0.00050		mg/L	1	4/30/2021 7:10:50 PM	B77076
SM2340B: HARDNESS							Analyst: ELS	
Hardness (As CaCO3)	130	2.5	6.6		mg/L	1	5/4/2021 8:04:00 AM	R77121
EPA METHOD 1664B							Analyst: KMN	
N-Hexane Extractable Material	ND	3.90	9.65		mg/L	1	5/5/2021 4:34:00 PM	59819
SM5210B: BOD							Analyst: AG	
Biochemical Oxygen Demand	DO Depletion <2.0	2.0	2.0		mg/L	1	5/5/2021 2:34:00 PM	59737
SM 4500 NH3: AMMONIA							Analyst: CJS	
Nitrogen, Ammonia	ND	0.36	1.0		mg/L	1	5/12/2021 3:43:00 PM	R77333
SM4500-H+B / 9040C: PH							Analyst: MH	
рН	8.21			Н	pH units	1	5/5/2021 1:58:12 PM	R77185
EPA METHOD 365.1: TOTAL PHO	SPHOROUS						Analyst: CJS	
Phosphorus, Total (As P)	0.026	0.010	0.010		mg/L	1	5/7/2021 2:19:00 PM	59857
SM2540C MOD: TOTAL DISSOLV	FD SOLIDS				Ū		Analyst: KS	
Total Dissolved Solids	207	20.0	20.0		mg/L	1	5/6/2021 3:23:00 PM	59817
SM 4500 NORG C: TKN					0		Analyst: CJS	
Nitrogen, Kjeldahl, Total	0.42	0.23	1.0	J	mg/L	1	5/13/2021 10:30:00 AM	59967
SM 2540D: TSS	0.12	0.20		-		-	Analyst: KS	
Suspended Solids	4.0	4.0	4.0		ma/l	1	5/5/2021 11:31:00 AM	59803
Suspended Solids	4.0	4.0	4.0		mg/L	I	5/5/2021 11.31.00 AM	39003

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level. D

Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

Qualifiers:

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits Sample pH Not In Range

Р Reporting Limit RL

% Recovery outside of range due to dilution or matrix S

Page 1 of 19

Analytical Report
Lab Order 2104C54

Date Reported: 6/1/2021

CLIENT:	AMAFCA			Client	Sample ID: RO	G-Nor	th-20210428 Dissol	ved
Project:	CMC			Colle	ection Date: 4/2	28/202	21 12:30:00 PM	
Lab ID:	2104C54-002	Matrix:	AQUEOUS	Rec	eived Date: 4/2	29/202	21 9:48:00 AM	
Analyses		Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA MET	HOD 365.1: TOTAL PHO	SPHOROUS					Analyst: C.	JS
Phosphor	rus, Total (As P)	0.011	0.010	0.010	mg/L	1	5/7/2021 2:21:00 PM	1 59857
disso	lved phosphorous							

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 2 of 19

Analytical Report Lab Order 2104C54

Date Reported: 6/1/2021

CLIENT: AMAFCA Project: CMC	Client Sample ID: RG-Isleta-20210429 Collection Date: 4/29/2021 8:30:00 AM							
Lab ID: 2104C54-003	Matrix:	AQUEOUS	Re	ceived	Date: 4/29	9/202	1 9:48:00 AM	
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8081: PESTICIDES							Analyst: LSB	
Dieldrin	ND	0.20	0.50		µg/L	1	5/11/2021 1:25:03 PM	59722
Surr: Decachlorobiphenyl	90.9	0	41.7-129		%Rec	1	5/11/2021 1:25:03 PM	59722
Surr: Tetrachloro-m-xylene	55.9	0	31.8-88.5		%Rec	1	5/11/2021 1:25:03 PM	59722
EPA METHOD 300.0: ANIONS							Analyst: JMT	
Nitrogen, Nitrite (As N)	ND	0.070	0.50		mg/L	5	4/29/2021 8:18:59 PM	R77061
Nitrogen, Nitrate (As N)	0.59	0.10	0.50		mg/L	5	4/29/2021 8:18:59 PM	R77061
EPA METHOD 200.7: METALS							Analyst: ELS	
Calcium	50	0.11	1.0		mg/L	1	5/4/2021 11:19:10 AM	59770
Chromium	ND 0.2	0.0021	0.0060		mg/L	1	5/4/2021 11:19:10 AM	59770
	9.3	0.067	1.0		mg/L	1	5/4/2021 11:19:10 AM	59770
EPA 200.8: DISSOLVED METALS				_			Analyst: bcv	
Copper Lead	0.00087 ND	0.00013 0.000034	0.0010	J	mg/L	1 1	4/30/2021 7:13:29 PM 4/30/2021 7:13:29 PM	B77076 B77076
	ND	0.000034	0.00050		mg/L	I		
SM2340B: HARDNESS	400	0.5	0.0				Analyst: ELS	
Hardness (As CaCO3)	160	2.5	6.6		mg/L	1	5/4/2021 8:04:00 AM	R77121
EPA METHOD 1664B							Analyst: KMN	
N-Hexane Extractable Material	ND	3.88	9.60		mg/L	1	5/5/2021 4:34:00 PM	59819
SM5210B: BOD							Analyst: AG	
Biochemical Oxygen Demand	2.8	2.0	2.0		mg/L	1	5/5/2021 2:34:00 PM	59737
SM 9223B FECAL INDICATOR: E. COLI	MPN						Analyst: KMN	1
E. Coli	<mark>1573</mark>	10.00	10.00		MPN/10	0 10	4/30/2021 5:13:00 PM	59720
SM 4500 NH3: AMMONIA							Analyst: CJS	
Nitrogen, Ammonia	ND	0.36	1.0		mg/L	1	5/12/2021 3:43:00 PM	R77333
SM4500-H+B / 9040C: PH							Analyst: MH	
рН	8.10			Н	pH units	1	5/5/2021 2:02:26 PM	R77185
EPA METHOD 365.1: TOTAL PHOSPHO	ROUS						Analyst: CJS	
Phosphorus, Total (As P)	0.46	0.050	0.050	D	mg/L	1	5/7/2021 2:27:00 PM	59857
SM2540C MOD: TOTAL DISSOLVED SC	DLIDS				-		Analyst: KS	
Total Dissolved Solids	234	40.0	40.0	D	mg/L	1	5/6/2021 3:23:00 PM	59817
SM 4500 NORG C: TKN				_	0. –		Analyst: CJS	
Nitrogen, Kjeldahl, Total	0.56	0.23	1.0	J	mg/L	1	5/13/2021 10:30:00 AM	
o	0.00	0.20	1.0	•	g/∟			
SM 2540D: TSS	160	4.0	4.0		ma/l	1	Analyst: KS	50000
Suspended Solids Refer to the QC Summary repor				100	mg/L	1	5/5/2021 11:31:00 AM	59803

* **Qualifiers:** Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н

ND

в Analyte detected in the associated Method Blank

Е Value above quantitation range

Analyte detected below quantitation limits

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

J

Р Sample pH Not In Range

Reporting Limit RL

Holding times for preparation or analysis exceeded

Hall Environmental Analysis Laboratory, Inc.

Page 3 of 19

Hall Environmental Ana	lysis Laboratory, Inc.	Lab Order 2104C54 Date Reported: 6/1/2021
CLIENT: AMAFCA	Clien	t Sample ID: RG-Isleta-20210429
Project: CMC	Col	lection Date: 4/29/2021 8:30:00 AM
Lab ID: 2104C54-003	Matrix: AQUEOUS Re	ceived Date: 4/29/2021 9:48:00 AM
Analyses	Result MDL RL	Qual Units DF Date Analyzed Batch ID

Analytical Report

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 4 of 19

Analytical Report Lab Order 2104C54

Date Analyzed

5/7/2021 2:28:00 PM

Analyst: CJS

Batch ID

59857

Hall Er	Hall Environmental Analysis Laboratory, Inc.		Date Reported: 6/1/2021
CLIENT:	AMAFCA		Client Sample ID: RG-Isleta-20210429 Dissolved
Project:	CMC		Collection Date: 4/29/2021 8:30:00 AM
Lab ID:	2104C54-004	Matrix: AQUEOUS	Received Date: 4/29/2021 9:48:00 AM

MDL

0.010

0.010

RL Qual Units

mg/L

DF

1

Result

0.26

4-1 4 nalwaia T ak 4 т

EPA METHOD 365.1: TOTAL PHOSPHOROUS

dissolved phosphorous

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Analyses

Phosphorus, Total (As P)

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits Sample pH Not In Range

Р

Reporting Limit RL

Analytical Report Lab Order 2104C54

Hall Environmental Analysis La		al Analysis Laboratory, Inc.	Date Reported: 6/1/2021
CLIENT:	AMAFCA		Client Sample ID: RG-Alameda-20210429
Project:	CMC		Collection Date: 4/29/2021 6:45:00 AM
Lab ID:	2104C54-005	Matrix: AQUEOUS	Received Date: 4/29/2021 9:48:00 AM

11 17 • -• ---

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
SM 9223B FECAL INDICATOR: E. COLI	MPN					Analyst: Ki	MN
E. Coli	<mark>31</mark>	10.00	10.00	MPN/10	0 10	4/30/2021 5:13:00 P	M 59720

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

В Analyte detected in the associated Method Blank

Е Value above quantitation range

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Page 6 of 19

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

 Client:
 Hall Environmental Analysis Lab

 Address:
 4901 Hawkins NE Suite D

 Albuquerque, NM 87109

 Attn:
 Andy Freeman

Work Order: Project: Reported: MBD0802 2104C54 5/18/2021 09:43

Analytical Results Report

Sample Location: Lab/Sample Number: Date Received: Matrix:	2104C54-001A (<mark>RG</mark> MBD0802-01 04/30/21 11:37 Water	-North-20210428) Collect Date: Collected By:	04/28/21 12:30				
Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Volatiles							
Tetrahydrofuran	ND	ug/L	2.50	5/4/21 15:55	TEC	EPA 8260C	
Surrogate: 1,2-Dichlorobenzei	ne-d4	102%	70-130	5/4/21 15:55	TEC	EPA 8260C	
Surrogate: 4-Bromofluorobenz	zene	92.8%	70-130	5/4/21 15:55	TEC	EPA 8260C	
Surrogate: Toluene-d8		99.6%	70-130	5/4/21 15:55	TEC	EPA 8260C	

Analytical Results Report (Continued)

Sample Location:	2104C54-001K (<mark>RG-1</mark>	North-20210428)	
Lab/Sample Number:	MBD0802-02	Collect Date:	04/28/21 12:30
Date Received:	04/30/21 11:37	Collected By:	
Matrix:	Water		

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles							
Benzidine	ND	ug/L	0.500	5/7/21 22:48	MAH	EPA 8270D	
Benzo[a]anthracene	ND	ug/L	0.500	5/7/21 22:48	MAH	EPA 8270D	
Benzo[a]pyrene	ND	ug/L	0.500	5/7/21 22:48	MAH	EPA 8270D	
Benzo[b]fluoranthene	ND	ug/L	0.500	5/7/21 22:48	MAH	EPA 8270D	
Benzo[k]fluoranthene	ND	ug/L	0.500	5/7/21 22:48	MAH	EPA 8270D	
Chrysene	ND	ug/L	0.500	5/7/21 22:48	MAH	EPA 8270D	
Di (2-ethylhexyl) phthalate	ND	ug/L	0.500	5/7/21 22:48	MAH	EPA 8270D	
Dibenz(a,h)anthracene	ND	ug/L	0.500	5/7/21 22:48	MAH	EPA 8270D	
Dibenzofuran	ND	ug/L	0.500	5/7/21 22:48	MAH	EPA 8270D	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.500	5/7/21 22:48	MAH	EPA 8270D	
Pentachlorophenol	ND	ug/L	0.500	5/7/21 22:48	MAH	EPA 8270D	
Surrogate: 2,4,6-Tribromophenol	80.1%		48-120	5/7/21 22:48	MAH	EPA 8270D	
Surrogate: 2-Fluorobiphenyl	82.0%		57-113	5/7/21 22:48	МАН	EPA 8270D	
Surrogate: 2-Fluorophenol	76.5%		37-110	5/7/21 22:48	МАН	EPA 8270D	
Surrogate: Nitrobenzene-d5	82.4%		65-110	5/7/21 22:48	МАН	EPA 8270D	
Surrogate: Phenol-2,3,4,5,6-d5	80.3%		51-112	5/7/21 22:48	МАН	EPA 8270D	
Surrogate: Terphenyl-d14	102%		57-133	5/7/21 22:48	МАН	EPA 8270D	

Analytical Results Report (Continued)									
Sample Location:	2104C54-003A (<mark>R0</mark>	<mark>G-Isleta</mark> -20210429)							
Lab/Sample Number:	MBD0802-03	Collect Date:	04/29/21 08:30						
Date Received:	04/30/21 11:37	Collected By:							
Matrix:	Water								
Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier		
Volatiles									
Tetrahydrofuran	ND	ug/L	2.50	5/4/21 16:27	TEC	EPA 8260C			
Surrogate: 1,2-Dichlorobenzer	ne-d4	104%	70-130	5/4/21 16:27	TEC	EPA 8260C			
Surrogate: 4-Bromofluorobenz	zene	93.0%	70-130	5/4/21 16:27	TEC	EPA 8260C			
Surrogate: Toluene-d8		99.7%	70-130	5/4/21 16:27	TEC	EPA 8260C			

Analytical Results Report (Continued)

Sample Location:	2104C54-003M (<mark>RG-</mark>	<mark>lsleta</mark> -20210429)	
Lab/Sample Number:	MBD0802-04	Collect Date:	04/29/21 08:30
Date Received:	04/30/21 11:37	Collected By:	
Matrix:	Water		

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles							
Benzidine	ND	ug/L	0.500	5/7/21 23:15	MAH	EPA 8270D	
Benzo[a]anthracene	ND	ug/L	0.500	5/7/21 23:15	MAH	EPA 8270D	
Benzo[a]pyrene	ND	ug/L	0.500	5/7/21 23:15	MAH	EPA 8270D	
Benzo[b]fluoranthene	ND	ug/L	0.500	5/7/21 23:15	MAH	EPA 8270D	
Benzo[k]fluoranthene	ND	ug/L	0.500	5/7/21 23:15	MAH	EPA 8270D	
Chrysene	ND	ug/L	0.500	5/7/21 23:15	MAH	EPA 8270D	
Di (2-ethylhexyl) phthalate	ND	ug/L	0.500	5/7/21 23:15	MAH	EPA 8270D	
Dibenz(a,h)anthracene	ND	ug/L	0.500	5/7/21 23:15	MAH	EPA 8270D	
Dibenzofuran	ND	ug/L	0.500	5/7/21 23:15	MAH	EPA 8270D	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.500	5/7/21 23:15	MAH	EPA 8270D	
Pentachlorophenol	ND	ug/L	0.500	5/7/21 23:15	MAH	EPA 8270D	
Surrogate: 2,4,6-Tribromophenol	86.1%		48-120	5/7/21 23:15	MAH	EPA 8270D	
Surrogate: 2-Fluorobiphenyl	80.9%		57-113	5/7/21 23:15	MAH	EPA 8270D	
Surrogate: 2-Fluorophenol	81.0%		37-110	5/7/21 23:15	МАН	EPA 8270D	
Surrogate: Nitrobenzene-d5	84.0%		65-110	5/7/21 23:15	МАН	EPA 8270D	
Surrogate: Phenol-2,3,4,5,6-d5	82.2%		51-112	5/7/21 23:15	МАН	EPA 8270D	
Surrogate: Terphenyl-d14	83.8%		57-133	5/7/21 23:15	МАН	EPA 8270D	

Analytical Results Report (Continued)									
Sample Location:	2104C54-006A (Tri	p Blank)							
Lab/Sample Number:	MBD0802-05	Collect Date:	04/28/21 12:30						
Date Received:	04/30/21 11:37	Collected By:							
Matrix:	Water								
Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier		
Volatiles									
Tetrahydrofuran	ND	ug/L	0.500	5/4/21 15:24	TEC	EPA 8260C			
Surrogate: 1,2-Dichlorobenzer	ne-d4	103%	70-130	5/4/21 15:24	TEC	EPA 8260C			
Surrogate: 4-Bromofluorobenz	rene	95.2%	70-130	5/4/21 15:24	TEC	EPA 8260C			
Surrogate: Toluene-d8		98.2%	70-130	5/4/21 15:24	TEC	EPA 8260C			

Authorized Signature,

Justin Doty For Todd Taruscio, Laboratory Manager

PQL	Practical Quantitation Limit
ND	Not Detected
MCL	EPA's Maximum Contaminant Level

- Sample results reported on a dry weight basis Dry
- * Not a state-certified analyte

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Quality Control Data

Semivolatiles

ND ND ND ND ND ND ND ND ND ND	0.500 0.500 0.500 0.500 0.500 0.500 0.500	Units ug/L ug/L ug/L ug/L ug/L	Level Prepared: 5/4/	Result	%REC	Limits	RPD	Limit
ND ND ND ND ND ND	0.500 0.500 0.500 0.500 0.500 0.500	ug/L ug/L ug/L ug/L	Prepared: 5/4/	2021 Analyzed:	5/7/2021			
ND ND ND ND ND ND	0.500 0.500 0.500 0.500 0.500 0.500	ug/L ug/L ug/L ug/L	Prepared: 5/4/	2021 Analyzed:	: 5/7/2021			
ND ND ND ND ND ND	0.500 0.500 0.500 0.500 0.500 0.500	ug/L ug/L ug/L ug/L						
ND ND ND ND ND	0.500 0.500 0.500 0.500 0.500	ug/L ug/L ug/L						
ND ND ND ND ND	0.500 0.500 0.500 0.500	ug/L ug/L						
ND ND ND ND	0.500 0.500 0.500	ug/L						
ND ND ND	0.500 0.500							
ND ND	0.500	ug/L						
ND								
		ug/L						
ND	0.500	ug/L						
	0.500	ug/L						
ND	0.500	ug/L						
ND	0.500	ug/L						
	42.0	ug/L	50.5		83.1	51-112		
	22.5	ug/L	25.0		89.9	65-110		
	26.6	ug/L	25.8		103	57-133		
	41.0	ug/L	50.0		82.0	37-110		
	21.6	ug/L	25.5		84.6	57-113		
	37.0	ug/L	51.8		71.6	48-120		
			Prepared: 5/4/	2021 Analyzed:	5/7/2021			
5.11	0.500	ug/L	5.00		102	62-120		
4.60	0.500	ug/L	5.00		92.0	71-121		
4.24	0.500	ug/L	5.00		84.8	51-118		
5.08	0.500	ug/L	5.00		102	62-123		
4.55	0.500	ug/L	5.00		91.0	75-120		
4.74	0.500	-	5.00		94.8	74-124		
7.7/								
	4.60 4.24 5.08	4.60 0.500 4.24 0.500 5.08 0.500 4.55 0.500 4.74 0.500 4.88 0.500 4.47 0.500	4.60 0.500 ug/L 4.24 0.500 ug/L 5.08 0.500 ug/L 4.55 0.500 ug/L 4.74 0.500 ug/L 4.88 0.500 ug/L 4.47 0.500 ug/L	5.11 0.500 ug/L 5.00 4.60 0.500 ug/L 5.00 4.24 0.500 ug/L 5.00 5.08 0.500 ug/L 5.00 4.55 0.500 ug/L 5.00 4.74 0.500 ug/L 5.00 4.88 0.500 ug/L 5.00 4.47 0.500 ug/L 5.00	5.11 0.500 ug/L 5.00 4.60 0.500 ug/L 5.00 4.24 0.500 ug/L 5.00 5.08 0.500 ug/L 5.00 4.55 0.500 ug/L 5.00 4.74 0.500 ug/L 5.00 4.88 0.500 ug/L 5.00 4.47 0.500 ug/L 5.00	4.60 0.500 ug/L 5.00 92.0 4.24 0.500 ug/L 5.00 84.8 5.08 0.500 ug/L 5.00 102 4.55 0.500 ug/L 5.00 91.0 4.74 0.500 ug/L 5.00 94.8 4.98 0.500 ug/L 5.00 99.6 4.88 0.500 ug/L 5.00 97.6 4.47 0.500 ug/L 5.00 89.4	5.110.500ug/L5.0010262-1204.600.500ug/L5.0092.071-1214.240.500ug/L5.0084.851-1185.080.500ug/L5.0010262-1234.550.500ug/L5.0091.075-1204.740.500ug/L5.0094.874-1244.980.500ug/L5.0099.660-1444.880.500ug/L5.0097.680-1204.470.500ug/L5.0089.466-116	5.110.500ug/L5.0010262-1204.600.500ug/L5.0092.071-1214.240.500ug/L5.0084.851-1185.080.500ug/L5.0010262-1234.550.500ug/L5.0091.075-1204.740.500ug/L5.0094.874-1244.980.500ug/L5.0099.660-1444.880.500ug/L5.0097.680-1204.470.500ug/L5.0089.466-116

Quality Control Data

(Continued)

Semivolatiles (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBE0341 - SVOC Wat	er (Continued)									
LCS Dup (BBE0341-BSD1)					Prepared: 5/4	/2021 Analyze	d: 5/7/2021			
Benzo[a]pyrene	4.57		0.500	ug/L	5.00		91.4	66-116	2.21	25
Indeno(1,2,3-cd)pyrene	4.92		0.500	ug/L	5.00		98.4	62-123	3.20	25
Dibenz(a,h)anthracene	4.89		0.500	ug/L	5.00		97.8	62-120	4.40	30
Chrysene	4.87		0.500	ug/L	5.00		97.4	74-124	2.71	25
Dibenzofuran	4.63		0.500	ug/L	5.00		92.6	75-120	1.74	25
Di (2-ethylhexyl) phthalate	5.18		0.500	ug/L	5.00		104	60-144	3.94	32
Benzo[b]fluoranthene	4.92		0.500	ug/L	5.00		98.4	72-116	3.10	25
Benzo[a]anthracene	4.98		0.500	ug/L	5.00		99.6	80-120	2.03	25
Pentachlorophenol	3.83		0.500	ug/L	5.00		76.6	51-118	10.2	25
Benzo[k]fluoranthene	4.74		0.500	ug/L	5.00		94.8	71-121	3.00	25

Quality Control Data (Continued)

Volatiles

Analyte	Result Qu	Reporting al Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BBE0089 - VOC									
Blank (BBE0089-BLK1)				Prepared	& Analyzed: 5	/4/2021			
Tetrahydrofuran	ND	0.500	ug/L						
Surrogate: Toluene-d8		25.3	ug/L	25.0		101	70-130		
Surrogate: 4-Bromofluorobenzene		23.2	ug/L	25.0		92.6	70-130		
Surrogate: 1,2-Dichlorobenzene-d4		19.6	ug/L	19.0		103	70-130		
LCS (BBE0089-BS1)				Prepared	& Analyzed: 5	/4/2021			
Tetrahydrofuran	21.4	0.500	ug/L	22.7		94.1	80-120		
Matrix Spike (BBE0089-MS1)	Sou	rce: MBD0802-01		Prepared	& Analyzed: 5	/4/2021			
Tetrahydrofuran	106	2.50	ug/L	114	ND	93.5	70-130		
Matrix Spike Dup (BBE0089-MSD1)	Sou	rce: MBD0802-01		Prepared	& Analyzed: 5	/4/2021			
Tetrahydrofuran	97.6	2.50	ug/L	114	ND	85.9	70-130	8.48	25

	HALL ENVIRON ANALYSIS LABORAT	6 ORY	CHAIN OF CUS	TODY	RECORD PAGE	E: 1 OF: 1	MBD0802
SUB C	ONTRATOR: Anate	k ID COMPANY:	Anatek Labs, Inc.		PHONE:	(208) 883-2839 FAX:	(208) 882-9246
ADDRI	1282 A	Alturas Dr			ACCOUNT #:	EMAI	L:
CITY, S	STATE, ZIP: Mosco	ow, ID 83843					
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINERS ANALY	FICAL COMMENTS
1	2104C54-001A	RG-North-20210428	VOAHCL	Aqueous	4/28/2021 12:30:00 PM	3 8260: Tetrahydrofuran	
2	2104C54-001K	RG-North-20210428	1LAMGU	Aqueous	4/28/2021 12:30:00 PM	2 8270 See attached list	
3	2104C54-003A	RG-Isleta-20210429	VOAHCL	Aqueous	4/29/2021 8:30:00 AM	3 8260: Tetrahydrofuran	
4	2104C54-003M	RG-Isleta-20210429	1LAMGU	Aqueous	4/29/2021 8:30:00 AM	♀ 8270 See attached list	
5	2104C54-006A	Trip Blank	VOAHCL	Trip Blan		2 8260: Tetrahydrofuran Trip Blank	

SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

Relinquished By:	Date: 4/29/2021 Date:	Time: 2:38 PM	Received By:	Date: MSO/wr(Date:	Time: [137 Time:	REPORT TRANSMITTAL DESIRED: HARDCOPY (extra cost) FAX EMAIL ONLINE
Relinquished By:	Date:	Time:	Received By:	Date:	Time:	FOR LAB USE ONLY
TAT: Stan	dard	RUSH	Next BD 2nd BD	3rd BI		Temp of samples C Attempt to Cool ?
		talatan ambara na manaka wa asa				Comments:

Collaborative Monitoring Cooperative - Analys Attach to Chain of Custody

<u>Please refer to attached NPDES Permit No. NMR04A00 Appendix F. Methods and mi</u> (MQL's) will be those approved under 40 CFR 136 and specified in th

Analyte (Bold Indicates WQS)	CAS #	Fraction	Method #	MDL (µg/
Hardness (Ca + Mg)	NA	Total	200.7	2.4
Leau	7430-02-1	Dissolved	200.8	0.09
Copper	7440-50-8	Dissolved	200.8	1.06
Ammonia Lorgania nitragan	7661 41 7	Total	350.1	31.82
Total Kjehidal Nitrogen	17778-88-0	Total	351.2	58.78
Altrate + Nitrite	14797 55 9	Total	353.2	10.17
Polychlorinated biphenyls (PCBs)	1338-36-3	Total	1008	0.014
Tetrahydrofuran (THF)	109-99-9	Total	8260C	7.9
bis(2-Ethylhexyl)phthalate	117-81-7	Total	8270D	0.2
Dibenzofuran	132-64-9	Total	8270D	0.2
Indeno(1,2,3-cd)pyrene	193-39-5	Total	8270D	0.2
Benzo(b)fluoranthene	205-99-2	Total	8270D	0.1
Benzo(k)fluoranthene	207-08-9	Total	8270D	0.1
Chrysene	218-01-9	Total	8270D	0.2
Benzo(a)pyrene	50-32-8	Total	8270D	0.3
Dibenzo(a,h)anthracene	53-70-3	Total	8270D	0.3
Benzo(a)anthracene	56-55-3	Total	8270D	0.2
Dieldrin	60-57-1	Total	8081	0.1
Pentachlorophenol	87-86-5	Total	8270D	0.2
Benzidine	92-87-5	Total	8270D	0.1
Chemical Oxygen Demand	E1641638 ²	Total	НАСН	5100
Gross alpha (adjusted)	NA	Total	Method 900	0.1 pGi/L
Total Dissolved Solida	E1642222	Total	SM 25400	60.4
Total Suspended Colids	NA	Total	SM 2540D	3450
Biological Oxygon Domand	N/A	Total	Standard Methods	930
Dilland Grease		Total	1664.4	5000
Evoli enumeration			SM 9223B	
phile			SM 1500	
Phospherus		Dissolved		100
Chespholus		Total	365.1	100
Chromium IV		Total	3500Cr C-2011	100

S:\Projects\DB20.1245_SSCAFCA_On-Call_Engineering\Docs\SAP\2019_Parameter list_CMC.doc 4/29/2021

Page 9 of 10

Anatek Labs, Inc.	Sample Receipt and Preservation Form	MBD0802
Client Name:	Project:	
TAT: Normal RUSH:	days	
Samples Received From: FedEx	UPS USPS Client Courier Other:	
Custody Seal on Cooler/Box: Yes	No Custody Seals Intact: Yes	No N/A
Number of Coolers/Boxes:	Type of Ice: Ice/Ice Packs	Blue Ice Dry Ice None
	Bags Foam/Peanuts None Other:	
Cooler Temp As Read (°C):	_ Cooler Temp Corrected (°C): The	rmometer Used: $\underline{IK-5}$
Samples Received Intact? Chain of Custody Present? Samples Received Within Hold Time? Samples Properly Preserved? VOC Vials Free of Headspace (<6mm)? VOC Trip Blanks Present? Labels and Chains Agree? Total Number of Sample Bottles Received? Total Number of Sample Bottles Received? Chain of Custody Fully Completed? Correct Containers Received? Anatek Bottles Used? Record preservatives (and lot numbers	Yes No N/A Yes No N/A Yes No Unknown	Comments:
Notes, comments, etc. (also use this s	pace if contacting the client - record names and	date/time)
Received/Inspected By:	Date/Time:Date/Time:	1137

. . .

Page 1 of 1

Pace Analytical® ANALYTICAL REPORT May 11, 2021

Hall Environmental Analysis Laboratory

Sample Delivery Group:

Samples Received:

Project Number:

Description:

Report To:

L1346058

04/30/2021

Jackie Bolte 4901 Hawkins NE Albuquerque, NM 87109

Entire Report Reviewed By:

Jason Romer Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Hall Environmental Analysis Laboratory

SDG: L1346058 DATE/TIME: 05/11/21 11:55 PAGE: 1 of 13

Тс Ss Cn Sr ʹQc Gl AI Sc

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
2104C54-001H RG-NORTH-20210428 L1346058-01	5
2104C54-001J RG-NORTH-20210428 L1346058-02	6
2104C54-003H RG-ISLETA-20210429 L1346058-03	7
2104C54-003J RG-ISLETA-20210429 L1346058-04	8
Qc: Quality Control Summary	9
Wet Chemistry by Method 3500Cr C-2011	9
Wet Chemistry by Method 410.4	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

¹Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
2104C54-001H RG-NORTH-20210428 L1346058	-01 WW			04/28/21 12:30	04/30/21 09:	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 410.4	WG1663227	1	05/03/2110:25	05/03/21 18:08	KAB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
2104C54-001J RG-NORTH-20210428 L1346058-	02 WW			04/28/21 12:30	04/30/21 09:	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 3500Cr C-2011	WG1664351	1	05/08/21 20:03	05/08/21 20:03	MSP	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
2104C54-003H RG-ISLETA-20210429 L1346058	-03 WW			04/29/21 08:30	04/30/21 09:	15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 410.4	WG1663227	1	05/03/2110:25	05/03/21 18:11	KAB	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
2104C54-003J RG-ISLETA-20210429 L1346058-	04 WW			04/29/21 08:30	04/30/21 09:	:15
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 3500Cr C-2011	WG1664351	1	05/08/21 20:27	05/08/21 20:27	MSP	Mt. Juliet, TN

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl


Sc

Ср

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Jason Romer Project Manager

SDG: L1346058 DATE/TIME:

PAGE: 4 of 13

2104C54-001H RG-NORTH-20210428 Collected date/time: 04/28/2112:30

SAMPLE RESULTS - 01

Wet Chemistry by Method 410.4

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l		mg/l		date / time		2
COD	ND		20.0	1	05/03/2021 18:08	WG1663227	ЪС

SAMPLE RESULTS - 02

Wet Chemistry by Method 3500Cr C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l		mg/l		date / time		2
Hexavalent Chromium	ND		0.000500	1	05/08/2021 20:03	WG1664351	Tc

1

2104C54-003H RG-ISLETA-20210429 Collected date/time: 04/29/21 08:30

SAMPLE RESULTS - 03

Wet Chemistry by Method 410.4

	Re	sult <u>Qu</u>	alifier RDL	. Dilu	ition	Analysis	Batch	Ср
Analyte	mg	/I	mg/	1		date / time		2
COD	48	2	20.	D 1		05/03/2021 18:11	WG1663227	Tc

SAMPLE RESULTS - 04

Wet Chemistry by Method 3500Cr C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l		mg/l		date / time		2
Hexavalent Chromium	ND		0.000500	1	05/08/2021 20:27	WG1664351	Tc

WG1664351

Wet Chemistry by Method 3500Cr C-2011

QUALITY CONTROL SUMMARY

Method Blank (MB)

Method Blank (M	10)				C
(MB) R3652835-1 05/0	8/21 16:53				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	T
Hexavalent Chromium	U		0.000150	0.000500	
					³ S

Original Sample (OS) • Duplicate (DUP)

(OS) • (DUP) R3652835	3 05/08/21 18:12						C
	Original Result DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	्र ह	
Analyte	mg/l		%		%		5
Hexavalent Chromium	ND	1	0.000		20		

Original Sample (OS) • Duplicate (DUP)

(OS) • (DUP) R3652835-	5 05/08/2120:	51						
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte		mg/l		%		%		
Hexavalent Chromium		ND	1	0.000		20		

Laboratory Control Sample (LCS)

(LCS) R3652835-2 05/0	(LCS) R3652835-2 05/08/2117:00										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/l	mg/l	%	%							
		0.00207	103	90.0-110							

L1344024-01 Original Sample (OS) • Matrix Spike (MS)

Hall Environmental Analysis Laboratory

(OS) L1344024-01 05/08/21 18:19 • (MS) R3652835-4 05/08/21 18:27											
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier				
Analyte	mg/l	mg/l	mg/l	%		%					
Hexavalent Chromium	0.0500	ND	0.0497	99.5	1	90.0-110					

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) • (MS) R3652835-6	(OS) • (MS) R3652835-6 05/08/21 21:06 • (MSD) R3652835-7 05/08/21 21:13												
	Spike Amount Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%		%			%	%		
Hexavalent Chromium	0.0500	0.0501	0.0504	100	101	1	90.0-110			0.478	20		
A	ACCOUNT:		PRO	JECT:			SDG:		DATE/	TIME:		PAGE:	

L1346058

05/11/21 11:55

9 of 13

WG1663227

Wet Chemistry by Method 410.4

QUALITY CONTROL SUMMARY L1346058-01,03

Method Blank (MB)

(MB) R3650050-1 05	5/03/21 17:38			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
COD	U		11.7	20.0

L1345225-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1345225-01 05/03/2	OS) L1345225-01 05/03/2117:45 • (DUP) R3650050-3 05/03/2117:46									
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				
Analyte	mg/l	mg/l		%		%				
COD	65.2	61.1	1	6.55		20				

L1346453-01 Original Sample (OS) • Duplicate (DUP)

L1346453-01 Orig	ginal Sample	(OS) • Dup	olicate (DUP)						7
(OS) L1346453-01 05/03/21 17:49 • (DUP) R3650050-4 05/03/21 17:54										
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				8
Analyte	mg/l	mg/l		%		%				
COD	431	421	1	2.40		20				9

Laboratory Control Sample (LCS)

(LCS) R3650050-2 05/03/2117:40								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/l	mg/l	%	%				
COD	500	505	101	90.0-110				

L1346340-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1346340-01 05/03/2	(OS) L1346340-01 05/03/21 17:55 • (MS) R3650050-5 05/03/21 17:59 • (MSD) R3650050-6 05/03/21 18:00											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ma/l	ma/l	ma/l	ma/l	%	%		%			%	%
	mg/i	gr.				70		,0			,0	70

ACCOUNT:
Hall Environmental Analysis Laboratory

DATE/TIME: 05/11/21 11:55 Тс

Ss

Cn

Sr

Qc

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

SDG: L1346058 Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1346058 ¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients,hallenvironmental.com

B158

1

SUB CONTRATOR: Pace TN COMPANY PHONE: FAX: PACE TN (800) 767-5859 (615) 758-5859 ADDRESS: ACCOUNT #: EMAIL: 12065 Lebanon Rd CITY, STATE, ZIP. Mt. Juliet, TN 37122 4346058 BOTTLE COLLECTION ANALYTICAL COMMENTS MATRIX DATE SAMPLE CLIENT SAMPLE ID TYPE ITEM 2104C54-001H RG-North-20210428 500HDPEH2 Aqueous 4/28/2021 12:30:00 PM 1 COD 1 -01 504 1LHDPEHNO Aqueous 4/28/2021 12:30:00 PM 1 Adjusted Gross Alpha 2 2104C54-001I RG-North-20210428 3 2104C54-001J RG-North-20210428 120mL Aqueous 4/28/2021 12:30:00 PM 1 Cr 6 -02 500HDPEH2 4/29/2021 8:30:00 AM 1 COD 2104C54-003H RG-Isleta-20210429 Aqueous 4 -02 504 1 Adjusted Gross Alpha 1LHDPEHNO Aqueous 4/29/2021 8:30:00 AM 5 2104C54-003I RG-Isleta-20210429 4/29/2021 8:30:00 AM 1 Cr 6 6 2104C54-003J RG-Isleta-20210429 120mL Aqueous -04

Sample Recei Checklist COC Seal Present/Intact: COC Signed/Accurate: If Applicable VOA Zero Headspace: Bottles arrive intact: N Fres.Correct/Check: Y N Correct bottles used: Sufficient volume sent: RAD Screen <0.5 mR/hr:

SPECIAL INSTRUCTIONS / COMMENTS:

5016 1223 7735

Relinquished By:	Date: 4/29/2021 Date:	Time: 11:53 AM Time:	Received By:	Date:	Time:	REPORT TRANSMITTAL DESIRED:
	Date:	Time:	Received By:	Date: 4/30/24	Time 915	Temp of samples 2.H0=27 Temp to Cool?
TAT: Standa	ard 🕱	RUSH	Next BD 2nd BD	3rd BE		Comments:

an affiliate of The GEL Group INC

www.capefearanalytical.com

May 21, 2021

Mr. Andy Freeman Hall Environmental 4901 Hawkins NE Suite D Albuquerque, New Mexico 87109

Re: Routine Analysis Work Order: 18056 SDG: 2104C54

Dear Mr. Freeman:

Cape Fear Analytical LLC (CFA) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on April 30, 2021. This original data report has been prepared and reviewed in accordance with CFA's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at 910-795-0421.

Sincerely,

Cynde Larking

Cynde Larkins Project Manager

Purchase Order: IDIQ Pricing Enclosures

Website: clients.hallenvironmental.com CFA NO #18056

SUB CO	ONTRATOR: Cape	Fear Analytical COMPANY:	Cape Fear Analytic	cal	PHONE:	(910) 795-0421	FAX:
ADDRE	ass: 3306	Kitty Hawk Rd Ste 120			ACCOUNT #:		EMAIL:
CITY, S	TATE, ZIP: Wilm	ington, NC 28405					
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINER	ANALYTICAL COMMENTS
1	2104C54-001G	RG-North-20210428	1LAMGU	Aqueous	4/28/2021 12:30:00 PM	2 PCB Congeners 166	8
2	2104C54-003G	RG-Isleta-20210429	1LAMGU	Aqueous	4/29/2021 8:30:00 AM	2 PCB Congeners 166	8

SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

Relinquished By:	Date: 4/29/2021 Date:	Time: 11:50 AM Time:	Received By Received By:	Date: 30 APR 21 Date:	Time: 1005 Time:	REPORT TRANSMITTAL DESIRED:		
Relinquished By:	Date:	Time:	Received By:	Date:	Time:	FOR LAB USE ONLY		
TAT: Sta	andard 💢	RUSH	Next BD 2nd BD	3rd BI	D	Comments:		

SAMPLE RECEIPT CHECKLIST

Cape Fear Analytical

Clie	ent: HALL				Work Order: 18056
Shi	pping Company: FedEx				Date/Time Received: 30APR21 (005
Sus	pected Hazard Information	Yes	NA	No	DOE Site Sample Packages Yes NA No*
Shipped as DOT Hazardous?				~	Screened <0.5 mR/hr?
Sar	nples identified as Foreign Soil?				Samples < 2x background?
		Yes	1		* Notify RSO of any responses in this column immediately.
Air Sample Receipt Specifics Air sample in shipment?			NA	No	Air Witness:
	Sample Receipt Criteria	Yes	NA	No	Comments/Qualifiers (required for Non-Conforming Items)
1	Shipping containers received intact and sealed?	\checkmark			seals broken damaged container leaking container other(describe)
2	Custody seal/s present on cooler?	\checkmark			Seal intact? (Yes No
3	Chain of Custody documents included with shipment?	\checkmark			
4	Samples requiring cold preservation within 0-6°C?			\checkmark	Preservation Method ice bags loose ice blue ice) dry ice none other (describe) $G \cdot 5^\circ - 0, (= 6.4^\circ C)$
5	Aqueous samples found to have visible solids?	/			6.5°-0.(= 6.1°C Sample IDS, containers affected: Minimual VISIble Dolids (<1%)
5	Samples requiring chemical preservation at proper pH?		/		Sample IDs, containers affected and pH observed: pH = 7 on both If preservative added, Lot#:
7	Samples requiring preservation have no residual chlorine?	~			Sample IDs, containers affected: If preservative added, Lot#:
8	Samples received within holding time?	~			Sample IDs, tests affected:
9	Sample IDs on COC match IDs on containers?	/			Sample IDs, containers affected:
10	Date & time of COC match date & time on containers?	\checkmark	1		Sample IDs, containers affected:
11	Number of containers received match number indicated on COC?			~	List type and number of containers / Sample IDS, containers affected: per sample, only COC lists Z containers per sample, only I-IL WMAG bottle per sample received
12	COC form is properly signed in relinquished/received sections?	\checkmark			
Cor	nments:				

Date: <u>30APRZI</u>

[EXTERNAL EMAIL] DO NOT CLICK links or attachments unless you recognize the sender and know the content is safe.

Hi Cynde,

Please proceed with analysis.

Thank you,

Andy Freeman - Hall Environmental, 4901 Hawkins NE, Albuquerque, NM 87109, 505-345-3975, 505-345-4107 fax www.hallenvironmental.com - andy@hallenvironmental.com https://www.surveymonkey.com/r/NGVXRBV

For easy access to all of your past reports, setup an account on the Hall Environmental Web Portal. Just visit our website and follow the instructions for setting up an account. We welcome your feedback. Please visit the survey monkey link to complete a brief survey on your experience with Hall Environmental.

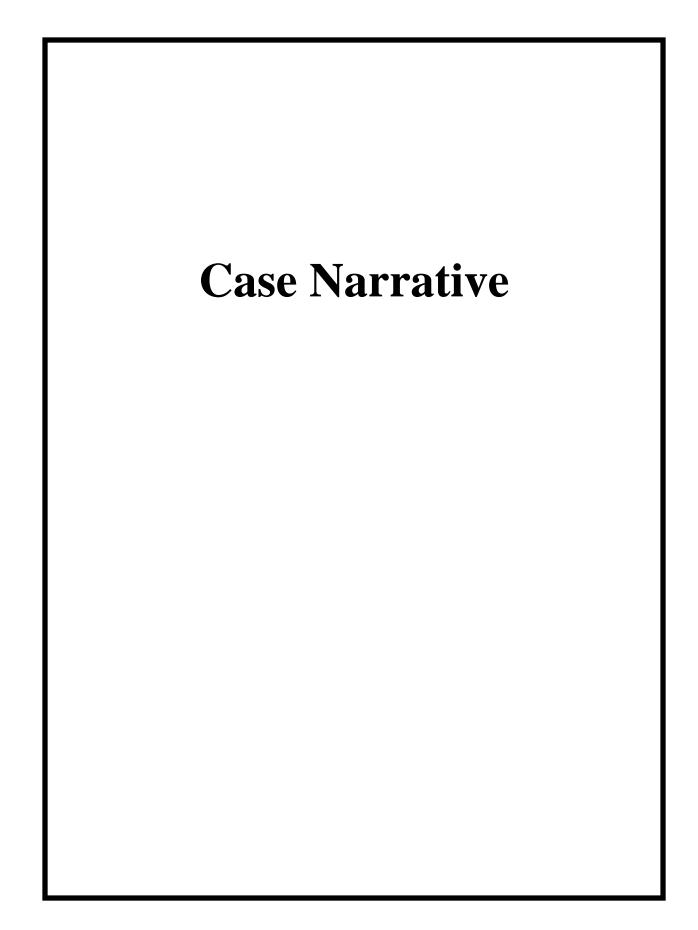
From: Cynde Larkins <Cynde.Larkins@cfanalytical.com>
Sent: Friday, April 30, 2021 12:25 PM
To: Andy Freeman <andy@hallenvironmental.com>
Subject: 2104C54

Andy,

CFA received the samples for the job number 2104C54 in good condition, but out of recommended temperature at 6.4° C. Please let me know if we may proceed with extraction.

Also, would you verify that these should be reported to the EDL or MDL?

Thanks,


Cynde Larkins Project Manager Cape Fear Analytical, LLC 3306 Kitty Hawk Road, Suite 120 Wilmington, NC 28405 (910) 795-0421

CFA is an Essential Business and remains open to support your analytical needs.

CONFIDENTIALITY NOTICE: This e-mail and any files transmitted with it are the property of The GEL Group, Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this e-mail or any files transmitted with it is prohibited and disclaimed by The GEL Group, Inc. and its affiliates..

PCB Congeners Analysis

PCBC Case Narrative Hall Environmental Analysis Laboratory (HALL) SDG 2104C54 Work Order 18056

Method/Analysis Information

Product:PCB Congeners by EPA Method 1668A in LiquidsAnalytical Method:EPA Method 1668AExtraction Method:SW846 3520CAnalytical Batch Number:46817Clean Up Batch Number:46739Extraction Batch Number:46738

Sample Analysis

Samples were received at 6.4°C. (18056001,18056002). The following samples were analyzed using the analytical protocol as established in EPA Method 1668A:

Sample ID	Client ID
12029212	Method Blank (MB)
12029213	Laboratory Control Sample (LCS)
12029214	Laboratory Control Sample Duplicate (LCSD)
18056001	2104C54-001G RG-North-20210428
18056002	2104C54-003G RG-Isleta-20210429

The samples in this SDG were analyzed on an "as received" basis.

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by Cape Fear Analytical LLC (CFA) as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with CF-OA-E-003 REV# 9.

Raw data reports are processed and reviewed by the analyst using the TargetLynx software package.

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this sample delivery group (SDG).

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (ICV or CCV) met the acceptance criteria.

Quality Control (QC) Information

Certification Statement

The test results presented in this document are certified to meet all requirements of the 2009 TNI Standard.

Method Blank (MB) Statement

The MB(s) analyzed with this SDG met the acceptance criteria.

Surrogate Recoveries

All surrogate recoveries were within the established acceptance criteria for this SDG.

Laboratory Control Sample (LCS) Recovery

The LCS spike recoveries met the acceptance limits.

Laboratory Control Sample Duplicate (LCSD) Recovery

The LCSD spike recoveries met the acceptance limits.

LCS/LCSD Relative Percent Difference (RPD) Statement

The RPD(s) between the LCS and LCSD met the acceptance limits.

QC Sample Designation

A matrix spike and matrix spike duplicate analysis was not required for this SDG.

Technical Information

Receipt Temperature

Samples were outside of the recommended range of 0-6°C. The client was notified of the temperature exceedance and the laboratory was instructed to proceed with analysis. 18056001 (2104C54-001G RG-North-20210428) and 18056002 (2104C54-003G RG-Isleta-20210429).

Holding Time Specifications

CFA assigns holding times based on the associated methodology, which assigns the date and time from sample collection. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this SDG did not require dilutions.

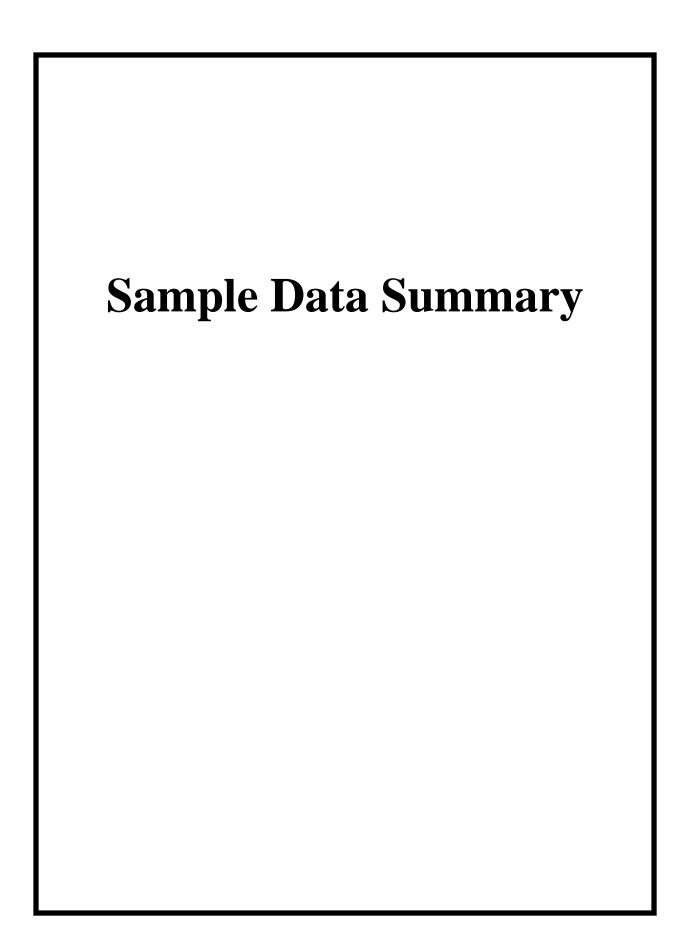
Sample Re-extraction/Re-analysis

Re-extractions or re-analyses were not required in this SDG.

Miscellaneous Information

Nonconformance (NCR) Documentation

A NCR was not required for this SDG.


Manual Integrations

Manual integrations were required for data files in this SDG. Certain standards and QC samples required manual integrations to correctly position the baseline as set in the calibration standard injections. Where manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this fraction.

System Configuration

This analysis was performed on the following instrument configuration:

Instrument ID	Instrument	System Configuration	Column ID	Column Description
HRP875_1	PCB Analysis	PCB Analysis	SPB-Octyl	30m x 0.25mm, 0.25um

Cape Fear Analytical, LLC

3306 Kitty Hawk Road Suite 120, Wilmington, NC 28405 - (910) 795-0421 - www.capefearanalytical.com

Certificate of Analysis Report for

HALL001 Hall Environmental Analysis Laboratory

Client SDG: 2104C54 CFA Work Order: 18056

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- B The target analyte was detected in the associated blank.
- C Congener has coeluters. When Cxxx, refer to congener number xxx for data
- J Value is estimated
- U Analyte was analyzed for, but not detected above the specified detection limit.

Review/Validation

Cape Fear Analytical requires all analytical data to be verified by a qualified data reviewer.

The following data validator verified the information presented in this case narrative:

Signature: Supre

Name: Erin Suhrie

Date: 21 MAY 2021

Title: Data Validator

		Certific	Congeners ate of Analysis le Summary			Page 1	of 8
SDG Number Lab Sample I Client Sample	D: 18056001	Client: Date Collected: Date Received:	HALL001 04/28/2021 12:30 04/30/2021 10:05		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date: Data File:	2104C54-001G <mark>RG-North</mark> -20210428 46817 05/17/2021 19:52 d17may21a-4	Method: Analyst:	EPA Method 1668A MJC		Prep Basis: Instrument: Dilution:	As Received HRP875 1	
Prep Batch: Prep Date:	46738 04-MAY-21	Prep Method: Prep Aliquot:	SW846 3520C 956.2 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
2051-60-7	1-MoCB	U	ND	pg/L	2.28	105	
2051-61-8	2-MoCB	U	ND	pg/L	2.97	105	
2051-62-9	3-MoCB	U	ND	pg/L	2.59	105	
13029-08-8	4-DiCB	U	ND	pg/L	15.4	105	
16605-91-7	5-DiCB	U	ND	pg/L	12.7	105	
25569-80-6	6-DiCB	U	ND	pg/L	12.4	105	
33284-50-3	7-DiCB	U	ND	pg/L	11.0	105	
34883-43-7	8-DiCB	U	ND	pg/L	11.1	105	
34883-39-1	9-DiCB	U	ND	pg/L	15.0	105	
33146-45-1	10-DiCB	U	ND	pg/L	10.2	105	
2050-67-1	11-DiCB	U	ND	pg/L	40.9	105	
2974-92-7	12-DiCB	CU	ND	pg/L	11.4	209	
2974-90-5	13-DiCB	C12					
34883-41-5	14-DiCB	U	ND	pg/L	13.1	105	
2050-68-2	15-DiCB	U	ND	pg/L	11.6	105	
38444-78-9	16-TrCB	U	ND	pg/L	3.58	105	
37680-66-3	17-TrCB	U	ND	pg/L	3.95	105	
37680-65-2	18-TrCB	CU	ND	pg/L	4.94	209	
38444-73-4	19-TrCB	U	ND	pg/L	4.14	105	
38444-84-7	20-TrCB	CJ	6.73	pg/L	2.51	209	
55702-46-0	21-TrCB	CJ	2.93	pg/L	2.59	209	
38444-85-8	22-TrCB	U	ND	pg/L	2.93	105	
55720-44-0	23-TrCB	U	ND	pg/L	2.59	105	
55702-45-9	24-TrCB	U	ND	pg/L	2.80	105	
55712-37-3	25-TrCB	U	ND	pg/L	2.32	105	
38444-81-4	26-TrCB	CU	ND	pg/L	2.66	209	
38444-76-7	27-TrCB	U	ND	pg/L	3.03	105	
7012-37-5	28-TrCB	C20					
15862-07-4	29-TrCB	C26					
35693-92-6	30-TrCB	C18		_			
16606-02-3	31-TrCB	U	ND	pg/L	5.17	105	
38444-77-8	32-TrCB	J	2.76	pg/L	2.74	105	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

Report Date: May 21, 2021	Report Date:	May 21, 2021
---------------------------	---------------------	--------------

		Certific	Congeners cate of Analysis ble Summary			Page 2	of 8
SDG Number: Lab Sample ID: Client Sample:	2104C54 : 18056001 1668A Water	Client: Date Collected: Date Received:	HALL001 04/28/2021 12:30 04/30/2021 10:05		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date:	2104C54-001G <mark>RG-North</mark> -20210428 46817 05/17/2021 19:52	Method: Analyst:	EPA Method 1668A MJC		Prep Basis: Instrument:	As Received HRP875	
Data File: Prep Batch: Prep Date:	d17may21a-4 46738 04-MAY-21	Prep Method: Prep Aliquot:	SW846 3520C 956.2 mL		Dilution: Prep SOP Ref:	1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
38444-86-9 33	3-TrCB	C21					
37680-68-5 34	4-TrCB	U	ND	pg/L	2.93	105	
37680-69-6 35	5-TrCB	U	ND	pg/L	3.07	105	
38444-87-0 36	5-TrCB	U	ND	pg/L	2.80	105	
38444-90-5 37	7-TrCB	U	ND	pg/L	2.99	105	
53555-66-1 38	3-TrCB	U	ND	pg/L	3.12	105	
38444-88-1 39	Ə-TrCB	U	ND	pg/L	2.57	105	
38444-93-8 40)-TeCB	CU	ND	pg/L	3.37	209	
52663-59-9 41	1-TeCB	U	ND	pg/L	4.69	105	
36559-22-5 42	2-TeCB	U	ND	pg/L	3.91	105	
70362-46-8 43	3-TeCB	U	ND	pg/L	4.87	105	
41464-39-5 44	4-TeCB	CU	ND	pg/L	5.90	314	
	5-TeCB	BCJ	3.16	pg/L	2.74	209	
41464-47-5 46	5-TeCB	U	ND	pg/L	2.84	105	
2437-79-8 47	7-TeCB	C44					
70362-47-9 48	3-TeCB	U	ND	pg/L	3.56	105	
	9-TeCB	CU	ND	pg/L	3.51	209	
)-TeCB	CU	ND	pg/L	2.61	209	
	1-TeCB	C45					
	2-TeCB	BJ	6.34	pg/L	4.14	209	
	3-TeCB	C50					
	4-TeCB	U	ND	pg/L	1.95	105	
	5-TeCB	U	ND	pg/L	3.16	105	
	5-TeCB	U	ND	pg/L	3.41	105	
	7-TeCB	U	ND	pg/L	3.45	105	
	3-TeCB	U	ND	pg/L	3.12	105	
	9-TeCB	CU	ND	pg/L	2.93	314	
)-TeCB	U	ND	pg/L	3.03	105	
	I-TeCB	BCJ	8.01	pg/L	3.16	418	
	2-TeCB	C59	ND		2.25	105	
	3-TeCB	U	ND	pg/L	3.35	105	
52005-38-8 64	4-TeCB	U	ND	pg/L	2.82	105	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners ate of Analysis le Summary			Page 3	of 8
SDG Number: Lab Sample II Client Sample	D: 18056001	Client: Date Collected: Date Received:	HALL001 04/28/2021 12:30 04/30/2021 10:05		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date:	2104C54-001G <mark>RG-North</mark> -20210428 46817 05/17/2021 19:52	Method: Analyst:	EPA Method 1668A MJC		Prep Basis: Instrument:	As Received HRP875	
Data File: Prep Batch: Prep Date:	d17may21a-4 46738 04-MAY-21	Prep Method: Prep Aliquot:	SW846 3520C 956.2 mL		Dilution: Prep SOP Ref:	1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
33284-54-7	65-TeCB	C44					
32598-10-0	66-TeCB	U	ND	pg/L	3.28	105	
73575-53-8	67-TeCB	U	ND	pg/L	2.99	105	
73575-52-7	68-TeCB	U	ND	pg/L	2.84	105	
60233-24-1	69-TeCB	C49					
32598-11-1	70-TeCB	C61					
	71-TeCB	C40					
	72-TeCB	U	ND	pg/L	3.43	105	
	73-TeCB	U	ND	pg/L	2.97	105	
	74-TeCB	C61					
	75-TeCB	C59					
	76-TeCB	C61		~			
	77-TeCB	U	ND	pg/L	3.20	105	
	78-TeCB	U	ND	pg/L	3.56	105	
	79-TeCB	U U	ND	pg/L	3.07	105	
	80-TeCB 81-TeCB	UU	ND ND	pg/L pg/L	2.82 2.80	105 105	
	82-PeCB	U	ND	pg/L pg/L	2.80 4.50	105	
	83-PeCB	U	ND	pg/L pg/L	4.50	105	
	84-PeCB	U	ND	pg/L	4.25	105	
	85-PeCB	CU	ND	pg/L	2.97	314	
	86-PeCB	BCJ	9.50	pg/L	3.16	627	
	87-PeCB	C86		10			
55215-17-3	88-PeCB	CU	ND	pg/L	3.95	209	
73575-57-2	89-PeCB	U	ND	pg/L	4.96	105	
68194-07-0	90-PeCB	CJ	12.4	pg/L	3.39	314	
68194-05-8	91-PeCB	C88					
52663-61-3	92-PeCB	U	ND	pg/L	4.58	105	
73575-56-1	93-PeCB	CU	ND	pg/L	3.60	209	
73575-55-0	94-PeCB	U	ND	pg/L	3.93	105	
38379-99-6	95-PeCB	U	ND	pg/L	4.75	105	
73575-54-9	96-PeCB	U	ND	pg/L	1.86	105	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners ate of Analysis le Summary			Page 4	of 8
SDG Number: Lab Sample ID Client Sample:		Client: Date Collected: Date Received:	HALL001 04/28/2021 12:30 04/30/2021 10:05		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date:	2104C54-001G RG-North -20210428 46817 05/17/2021 19:52	Method: Analyst:	EPA Method 1668A MJC		Prep Basis: Instrument:	As Received HRP875	
Data File: Prep Batch: Prep Date:	d17may21a-4 46738 04-MAY-21	Prep Method: Prep Aliquot:	SW846 3520C 956.2 mL		Dilution: Prep SOP Ref:	1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
41464-51-1 97	7-PeCB	C86					
60233-25-2 98	8-PeCB	CU	ND	pg/L	4.06	209	
38380-01-7 99	9-PeCB	J	3.49	pg/L	3.01	105	
39485-83-1 10	00-PeCB	C93					
37680-73-2 10	01-PeCB	C90					
68194-06-9 10	02-PeCB	C98					
60145-21-3 10	03-PeCB	U	ND	pg/L	4.23	105	
56558-16-8 10	04-PeCB	U	ND	pg/L	1.49	105	
	05-PeCB	J	4.43	pg/L	2.70	105	
70424-69-0 10	06-PeCB	U	ND	pg/L	3.37	105	
70424-68-9 10	07-PeCB	U	ND	pg/L	2.38	105	
	08-PeCB	CU	ND	pg/L	2.78	209	
	09-PeCB	C86					
38380-03-9 1	10-PeCB	BCJ	17.4	pg/L	2.84	209	
	11-PeCB	U	ND	pg/L	2.47	105	
	12-PeCB	U	ND	pg/L	2.87	105	
	13-PeCB	C90					
	14-PeCB	U	ND	pg/L	2.61	105	
	15-PeCB	C110					
	16-PeCB	C85					
	17-PeCB	C85		_			
	18-PeCB	BJ	9.14	pg/L	2.61	105	
	19-PeCB	C86		~			
	20-PeCB	U	ND	pg/L	2.95	105	
	21-PeCB	U	ND	pg/L	2.70	105	
	22-PeCB	U	ND	pg/L	3.74	105	
	23-PeCB	U C108	ND	pg/L	2.55	105	
	24-PeCB	C108					
	25-PeCB	C86	ND		2.14	105	
	26-PeCB	U	ND	pg/L	3.14	105	
	27-PeCB	U	ND	pg/L	3.07	105	
38380-07-3 12	28-HxCB	CU	ND	pg/L	3.22	209	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

52744-13-5

38411-22-2

35694-06-5

35065-28-2

56030-56-9

59291-64-4

52712-04-6

41411-61-4

68194-15-0

68194-14-9

74472-40-5

51908-16-8

68194-13-8

74472-41-6

38380-04-0

68194-08-1

52663-63-5

68194-09-2

35065-27-1

60145-22-4

33979-03-2

38380-08-4

69782-90-7

74472-42-7

39635-35-3

41411-62-5

135-HxCB

136-HxCB

137-HxCB

138-HxCB

139-HxCB

140-HxCB

141-HxCB

142-HxCB

143-HxCB

144-HxCB

145-HxCB

146-HxCB

147-HxCB

148-HxCB

149-HxCB

150-HxCB

151-HxCB

152-HxCB

153-HxCB

154-HxCB

155-HxCB

156-HxCB

157-HxCB

158-HxCB

159-HxCB

160-HxCB

Cape Fear A	nalytical LLC					Report Date:	May 21, 2021
	PCB Congeners Certificate of Analysis Sample Summary					Page 5	of 8
SDG Number: Lab Sample ID Client Sample:		Client: Date Collected: Date Received:	HALL001 04/28/2021 12:30 04/30/2021 10:05		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date: Data File:	2104C54-001G RG-North- 20210428 46817 05/17/2021 19:52 d17may21a-4	Method: Analyst:	EPA Method 1668A MJC		Prep Basis: Instrument: Dilution:	As Received HRP875 1	
Data File: Prep Batch: Prep Date:	46738 04-MAY-21	Prep Method: Prep Aliquot:	SW846 3520C 956.2 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
55215-18-4 12	29-HxCB	BCJ	18.8	pg/L	3.51	314	
52663-66-8 13	30-HxCB	U	ND	pg/L	4.33	105	
51798-70-7 13	31-HxCB	U	ND	pg/L	4.29	105	
38380-05-1 13	32-HxCB	BJ	5.31	pg/L	3.89	105	
				_			
35694-04-3 13	33-HxCB	U	ND	pg/L	4.50	105	

pg/L

1.92

2.38

3.41

3.53

3.87

4.94

4.81

2.07

1.42

3.37

3.56

2.01

1.40

1.69

2.93

1.61

1.28

2.51

2.68

2.09

2.99

209

105

105

209

105

105

105

105

105

105

209

105

105

105

209

105

105

209

105

105

105

CJ

U

U

C129

CU

C139

U

U

U

U

U

U

U

U

U

U

U

U

U

U

CU

C156

BCJ

C147

C135

BCJ

4.23

ND

ND

ND

ND

ND

ND

ND

ND

ND

8.09

ND

ND

ND

10.4

ND

ND

ND

ND

ND

ND

Co	nme	nts:
-		

В The target analyte was detected in the associated blank.

С Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

Cape Fear	Analytical LLC					Report Date:	May 21, 2021
		Page 6	of 8				
SDG Number Lab Sample I Client Sample	D: 18056001	Client: Date Collected: Date Received:	HALL001 04/28/2021 12:30 04/30/2021 10:05		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date: Data File:	2104C54-001G <mark>RG-Nort</mark> h-20210428 46817 05/17/2021 19:52 d17may21a-4	Method: Analyst:	EPA Method 1668A MJC		Prep Basis: Instrument: Dilution:	As Received HRP875 1	
Prep Batch: Prep Date:	46738 04-MAY-21	Prep Method: Prep Aliquot:	SW846 3520C 956.2 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
74472-43-8	161-HxCB	U	ND	pg/L	3.20	105	
39635-34-2	162-HxCB	U	ND	pg/L	1.88	105	
74472-44-9	163-HxCB	C129					
74472-45-0	164-HxCB	U	ND	pg/L	2.99	105	
74472-46-1	165-HxCB	U	ND	pg/L	2.95	105	
41411-63-6	166-HxCB	C128					
52663-72-6	167-HxCB	U	ND	pg/L	1.84	105	
59291-65-5	168-HxCB	C153					
32774-16-6	169-HxCB	U	ND	pg/L	2.13	105	
35065-30-6	170-НрСВ	J	3.41	pg/L	2.59	105	
52663-71-5	171-НрСВ	CU	ND	pg/L	2.64	209	
52663-74-8	172-НрСВ	U	ND	pg/L	2.64	105	
68194-16-1	173-НрСВ	C171					
38411-25-5	174-НрСВ	U	ND	pg/L	2.59	105	
40186-70-7	175-НрСВ	U	ND	pg/L	1.97	105	
52663-65-7	176-НрСВ	U	ND	pg/L	1.55	105	
52663-70-4	177-HpCB	U	ND	pg/L	2.61	105	
52663-67-9	178-HpCB	U	ND	pg/L	2.15	105	
52663-64-6	179-НрСВ	U	ND	pg/L	1.53	105	
35065-29-3	180-HpCB	BCJ	5.44	pg/L	2.07	209	

U

U

U

U

U

U

U

U

U

U

CU

C183

ND

2.18

1.88

2.26

1.34

1.42

2.82

1.42

1.72

2.01

1.95

1.97

pg/L

105

105

209

105

105

105

105

105

105

105

105

Comments:

74472-47-2

60145-23-5

52663-69-1

74472-48-3

52712-05-7

74472-49-4

52663-68-0

74487-85-7

39635-31-9

41411-64-7

74472-50-7

74472-51-8

181-HpCB

182-HpCB

183-HpCB

184-HpCB

185-HpCB

186-HpCB

187-HpCB

188-HpCB

189-HpCB

190-HpCB

191-HpCB

192-HpCB

В The target analyte was detected in the associated blank.

Congener has coeluters. When Cxxx, refer to congener number xxx for data С

J Value is estimated

		Certific	Congeners ate of Analysis le Summary			Page 7	of 8
SDG Number: Lab Sample ID: Client Sample:	2104C54 18056001 1668A Water	Client: Date Collected: Date Received:	HALL001 04/28/2021 12:30 04/30/2021 10:05		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date: Data File: Prep Batch: Prep Date:	2104C54-001G RG-North-20210428 46817 05/17/2021 19:52 d17may21a-4 46738 04-MAY-21	Method: Analyst: Prep Method: Prep Aliquot:	EPA Method 1668A MJC SW846 3520C 956.2 mL		Prep Basis: Instrument: Dilution: Prep SOP Ref:	As Received HRP875 1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
	3-НрСВ	C180					
	4-OcCB	J	2.84	pg/L	1.82	105	
	5-OcCB	U	ND	pg/L	1.92	105	
	6-OcCB	J	2.51	pg/L	2.26	105	
	7-OcCB	CU	ND	pg/L	1.69	209	
	8-OcCB	CU	ND	pg/L	2.64	209	
	9-OcCB	C198					
	0-OcCB	C197		~			
	1-OcCB	U	ND	pg/L	1.69	105	
	2-OcCB	U	ND	pg/L	1.80	105	
	3-OcCB	U	ND	pg/L	2.01	105	
	4-OcCB 5-OcCB	U U	ND ND	pg/L	1.72 1.42	105 105	
	6-NoCB	UU	ND	pg/L pg/L	1.42	105	
	7-NoCB	U	ND	pg/L pg/L	1.76	105	
	8-NoCB	U	ND	pg/L pg/L	1.36	105	
	9-DeCB	U	ND	pg/L pg/L	1.30	105	
	tal PCB Congeners	J	147	pg/L pg/L	1.20	105	

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1-MoCB		682	2090	pg/L	32.6	(15%-150%)
13C-3-MoCB		826	2090	pg/L	39.5	(15%-150%)
13C-4-DiCB		922	2090	pg/L	44.1	(25%-150%)
13C-15-DiCB		1380	2090	pg/L	65.9	(25%-150%)
13C-19-TrCB		1270	2090	pg/L	60.7	(25%-150%)
13C-37-TrCB		1300	2090	pg/L	62.2	(25%-150%)
13C-54-TeCB		1030	2090	pg/L	49.4	(25%-150%)
13C-77-TeCB		1750	2090	pg/L	83.8	(25%-150%)
13C-81-TeCB		1770	2090	pg/L	84.9	(25%-150%)
13C-104-PeCB		1010	2090	pg/L	48.1	(25%-150%)
13C-105-PeCB		1480	2090	pg/L	70.7	(25%-150%)
13C-114-PeCB		1440	2090	pg/L	68.9	(25%-150%)
13C-118-PeCB		1400	2090	pg/L	67.1	(25%-150%)
13C-123-PeCB		1490	2090	pg/L	71.3	(25%-150%)
13C-126-PeCB		1640	2090	pg/L	78.2	(25%-150%)
13C-155-HxCB		1150	2090	pg/L	55.0	(25%-150%)
13C-156-HxCB	С	2770	4180	pg/L	66.2	(25%-150%)
13C-157-HxCB	C156L					
13C-167-HxCB		1410	2090	pg/L	67.3	(25%-150%)
13C-169-HxCB		1490	2090	pg/L	71.5	(25%-150%)
13C-188-HpCB		1290	2090	pg/L	61.8	(25%-150%)
13C-189-HpCB		1270	2090	pg/L	60.8	(25%-150%)

PCB Congeners Page 8 of 8 Certificate of Analysis Sample Summary									
SDG Number:	2104C54	Client:	HALL001	Project:	HALL00113				
Lab Sample ID:	18056001	Date Collected:	04/28/2021 12:30	Matrix:	WATER				
Client Sample:	1668A Water	Date Received:	04/30/2021 10:05						
Client ID:	2104C54-001G RG-North-20210428			Prep Basis:	As Received				
Batch ID:	46817	Method:	EPA Method 1668A						
Run Date:	05/17/2021 19:52	Analyst:	MJC	Instrument:	HRP875				
Data File:	d17may21a-4			Dilution:	1				
Prep Batch:	46738	Prep Method:	SW846 3520C	Prep SOP Ref:	CF-OA-E-001				
Prep Date:	04-MAY-21	Prep Aliquot:	956.2 mL						
CAS No.	Parmname	Qual	Result	Units EDL	PQL				
Surrogate/Trace	Surrogate/Tracer recovery Qual Result Nominal Units Recovery% Acceptable Limits								

13C-202-OcCB13702090pg/L65.6(25%-150%)13C-205-OcCB16702090pg/L79.6(25%-150%)13C-206-NoCB18502090pg/L88.3(25%-150%)13C-208-NoCB15602090pg/L74.7(25%-150%)13C-209-DeCB16902090pg/L80.9(25%-150%)13C-28-TrCB14202090pg/L67.8(30%-135%)13C-111-PeCB17402090pg/L83.4(30%-135%)13C-178-HpCB19502090pg/L93.3(30%-135%)	Surrogate/Tracer recovery	Quai	Result	Nommai	Units	Kecovery 70	Acceptable Linits	
13C-206-NoCB18502090pg/L88.3(25%-150%)13C-208-NoCB15602090pg/L74.7(25%-150%)13C-209-DeCB16902090pg/L80.9(25%-150%)13C-28-TrCB14202090pg/L67.8(30%-135%)13C-111-PeCB17402090pg/L83.4(30%-135%)	13C-202-OcCB		1370	2090	pg/L	65.6	(25%-150%)	
13C-208-NoCB15602090pg/L74.7(25%-150%)13C-209-DeCB16902090pg/L80.9(25%-150%)13C-28-TrCB14202090pg/L67.8(30%-135%)13C-111-PeCB17402090pg/L83.4(30%-135%)	13C-205-OcCB		1670	2090	pg/L	79.6	(25%-150%)	
13C-209-DeCB16902090pg/L80.9(25%-150%)13C-28-TrCB14202090pg/L67.8(30%-135%)13C-111-PeCB17402090pg/L83.4(30%-135%)	13C-206-NoCB		1850	2090	pg/L	88.3	(25%-150%)	
13C-28-TrCB14202090pg/L67.8(30%-135%)13C-111-PeCB17402090pg/L83.4(30%-135%)	13C-208-NoCB		1560	2090	pg/L	74.7	(25%-150%)	
13C-111-PeCB 1740 2090 pg/L 83.4 (30%-135%)	13C-209-DeCB		1690	2090	pg/L	80.9	(25%-150%)	
10 ()	13C-28-TrCB		1420	2090	pg/L	67.8	(30%-135%)	
13C-178-HpCB 1950 2090 pg/L 93.3 (30%-135%)	13C-111-PeCB		1740	2090	pg/L	83.4	(30%-135%)	
	13C-178-HpCB		1950	2090	pg/L	93.3	(30%-135%)	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners ate of Analysis le Summary			Page 1	of 8
SDG Number Lab Sample I Client Sample	D: 18056002	Client: Date Collected: Date Received:	HALL001 04/29/2021 08:30 04/30/2021 10:05		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date: Data File:	2104C54-003G <mark>RG-Isleta</mark> -20210429 46817 05/17/2021 21:01 d17may21a-5	Method: Analyst:	EPA Method 1668A MJC		Prep Basis: Instrument: Dilution:	As Received HRP875 1	
Prep Batch: Prep Date:	46738 04-MAY-21	Prep Method: Prep Aliquot:	SW846 3520C 945.3 mL				
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
2051-60-7	1-MoCB	U	ND	pg/L	1.44	106	
2051-61-8	2-MoCB	U	ND	pg/L	1.90	106	
2051-62-9	3-MoCB	U	ND	pg/L	3.53	106	
13029-08-8	4-DiCB	U	ND	pg/L	10.7	106	
16605-91-7	5-DiCB	U	ND	pg/L	8.89	106	
25569-80-6	6-DiCB	U	ND	pg/L	8.67	106	
33284-50-3	7-DiCB	U	ND	pg/L	7.70	106	
34883-43-7	8-DiCB	U	ND	pg/L	7.79	106	
34883-39-1	9-DiCB	U	ND	pg/L	10.5	106	
33146-45-1	10-DiCB	U	ND	pg/L	7.72	106	
2050-67-1	11-DiCB	U	ND	pg/L	83.8	106	
2974-92-7	12-DiCB	CU	ND	pg/L	8.00	212	
2974-90-5	13-DiCB	C12					
34883-41-5	14-DiCB	U	ND	pg/L	9.16	106	
2050-68-2	15-DiCB	U	ND	pg/L	8.44	106	
38444-78-9	16-TrCB	U	ND	pg/L	2.98	106	
	17-TrCB	U	ND	pg/L	3.91	106	
	18-TrCB	CU	ND	pg/L	7.21	212	
	19-TrCB	U	ND	pg/L	2.16	106	
	20-TrCB	CJ	15.5	pg/L	1.54	212	
	21-TrCB	CJ	5.73	pg/L	1.59	212	
	22-TrCB	J	4.85	pg/L	1.48	106	
	23-TrCB	U	ND	pg/L	1.59	106	
	24-TrCB	U	ND	pg/L	1.71	106	
55712-37-3	25-TrCB	U	ND	pg/L	1.42	106	
	26-TrCB	CJ	2.73	pg/L	1.63	212	
	27-TrCB	U	ND	pg/L	1.86	106	
	28-TrCB	C20					
	29-TrCB	C26					
	30-TrCB	C18		_			
	31-TrCB	U	ND	pg/L	11.2	106	
38444-77-8	32-TrCB	U	ND	pg/L	2.92	106	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

Report Date:	May 21, 2021
р <u>Э</u>	c 0

		Certific	Congeners ate of Analysis le Summary			Page 2	of 8
SDG Number Lab Sample II Client Sample	D: 18056002	Client: Date Collected: Date Received:	HALL001 04/29/2021 08:30 04/30/2021 10:05		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date:	2104C54-003G RG-Isleta-20210429 46817 05/17/2021 21:01	Method: Analyst:	EPA Method 1668A MJC		Prep Basis: Instrument:	As Received HRP875	
Data File: Prep Batch: Prep Date:	d17may21a-5 46738 04-MAY-21	Prep Method: Prep Aliquot:	SW846 3520C 945.3 mL		Dilution: Prep SOP Ref:	1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
38444-86-9	33-TrCB	C21					
37680-68-5	34-TrCB	U	ND	pg/L	1.80	106	
37680-69-6	35-TrCB	J	3.19	pg/L	2.09	106	
38444-87-0	36-TrCB	U	ND	pg/L	1.88	106	
38444-90-5	37-TrCB	U	ND	pg/L	6.77	106	
53555-66-1	38-TrCB	U	ND	pg/L	2.12	106	
38444-88-1	39-TrCB	U	ND	pg/L	1.73	106	
38444-93-8	40-TeCB	CJ	5.37	pg/L	3.28	212	
52663-59-9	41-TeCB	U	ND	pg/L	4.55	106	
36559-22-5	42-TeCB	U	ND	pg/L	3.79	106	
70362-46-8	43-TeCB	U	ND	pg/L	4.74	106	
41464-39-5	44-TeCB	BCJ	15.8	pg/L	3.53	317	
70362-45-7	45-TeCB	BCJ	3.81	pg/L	1.71	212	
	46-TeCB	U	ND	pg/L	1.78	106	
	47-TeCB	C44					
	48-TeCB	U	ND	pg/L	3.45	106	
	49-TeCB	CJ	8.61	pg/L	3.41	212	
	50-TeCB	BCJ	3.03	pg/L	1.63	212	
	51-TeCB	C45					
	52-TeCB	BJ	23.5	pg/L	4.02	212	
	53-TeCB	C50		~			
	54-TeCB	U	ND	pg/L	1.10	106	
	55-TeCB	U	ND	pg/L	2.20	106	
	56-TeCB	J	6.18 ND	pg/L	2.37	106	
	57-TeCB	U	ND	pg/L	2.41	106	
	58-TeCB	U CU	ND	pg/L	2.18	106	
	59-TeCB 60-TeCB	U	ND ND	pg/L	2.84 3.60	317 106	
	61-TeCB	BCJ	ND 26.4	pg/L	2.20	423	
	62-TeCB	ВСЈ С59	20.4	pg/L	2.20	423	
	63-TeCB	U	ND	pg/L	2.33	106	
	64-TeCB	J	6.45	pg/L pg/L	2.33	106	
52005-50-0	-10CD	J	0.40	Pg/L	2.13	100	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

				Page 3	of 8		
SDG Number: Lab Sample ID: Client Sample:	2104C54 : 18056002 1668A Water	Client: Date Collected: Date Received:	Dle Summary HALL001 04/29/2021 08:30 04/30/2021 10:05		Project: Matrix:	HALL00113 WATER	
Client ID:	2104C54-003G RG-Isleta -20210429	Mal	FDA M-41-1 1669A		Prep Basis:	As Received	
Batch ID: Run Date: Data File:	46817 05/17/2021 21:01 d17may21a-5	Method: Analyst:	EPA Method 1668A MJC		Instrument: Dilution:	HRP875 1	
Prep Batch: Prep Date:	46738 04-MAY-21	Prep Method: Prep Aliquot:	SW846 3520C 945.3 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
33284-54-7 65	5-TeCB	C44					
32598-10-0 66	5-TeCB	BJ	12.1	pg/L	2.28	106	
73575-53-8 67	7-TeCB	U	ND	pg/L	2.07	106	
73575-52-7 68	3-TeCB	U	ND	pg/L	1.97	106	
60233-24-1 69	9-TeCB	C49					
32598-11-1 70)-TeCB	C61					
41464-46-4 71	1-TeCB	C40					
41464-42-0 72	2-TeCB	U	ND	pg/L	2.39	106	
74338-23-1 73	3-TeCB	U	ND	pg/L	2.88	106	
32690-93-0 74	4-TeCB	C61					
32598-12-2 75	5-TeCB	C59					
	5-TeCB	C61					
32598-13-3 77	7-TeCB	BJ	5.33	pg/L	2.24	106	
70362-49-1 78	3-TeCB	U	ND	pg/L	2.48	106	
	9-TeCB	U	ND	pg/L	2.14	106	
)-TeCB	U	ND	pg/L	1.97	106	
70362-50-4 81	1-TeCB	U	ND	pg/L	2.05	106	
	2-PeCB	J	5.80	pg/L	3.51	106	
	3-PeCB	U	ND	pg/L	3.70	106	
	4-PeCB	J	10.4	pg/L	3.32	106	
	5-PeCB	BCJ	7.30	pg/L	2.33	317	
	5-PeCB	BCJ	30.8	pg/L	2.45	635	
	7-PeCB	C86		_			
	3-PeCB	CU	ND	pg/L	4.72	212	
	P-PeCB	U	ND	pg/L	3.87	106	
)-PeCB	CJ	39.1	pg/L	2.64	317	
	I-PeCB	C88	0.51	~	0.50	10.5	
	2-PeCB	J	8.51	pg/L	3.58	106	
	3-PeCB	CU	ND	pg/L	2.79	212	
	4-PeCB	U	ND	pg/L	3.07	106	
	5-PeCB	BJ	30.4	pg/L	3.70	106	
73575-54-9 96	5-PeCB	U	ND	pg/L	1.50	106	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners ate of Analysis le Summary			Page 4	of 8
SDG Number: Lab Sample ID: Client Sample:	2104C54 18056002 1668A Water	Client: Date Collected: Date Received:	HALL001 04/29/2021 08:30 04/30/2021 10:05		Project: Matrix:	HALL00113 WATER	
Client ID:	2104C54-003G RG-Isleta -20210429		FDA M-41-11((9)		Prep Basis:	As Received	
Batch ID: Run Date:	46817 05/17/2021 21:01	Method: Analyst:	EPA Method 1668A MJC		Instrument:	HRP875	
Data File:	d17may21a-5		SW846 3520C		Dilution: Prep SOP Ref:	1 CF-OA-E-001	
Prep Batch: Prep Date:	46738 04-MAY-21	Prep Method: Prep Aliquot:	945.3 mL		TTep SOT Kei.	CI-0A-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
41464-51-1 97	-PeCB	C86					
60233-25-2 98	-PeCB	CU	ND	pg/L	3.15	212	
38380-01-7 99	-PeCB	J	13.4	pg/L	2.35	106	
39485-83-1 10	0-PeCB	C93					
37680-73-2 10	1-PeCB	C90					
68194-06-9 10	2-PeCB	C98					
60145-21-3 10	3-PeCB	U	ND	pg/L	3.28	106	
56558-16-8 10	4-PeCB	U	ND	pg/L	1.16	106	
32598-14-4 10	5-PeCB	J	18.7	pg/L	2.18	106	
70424-69-0 10	6-PeCB	U	ND	pg/L	2.60	106	
70424-68-9 10	7-PeCB	U	ND	pg/L	2.88	106	
70362-41-3 10	8-PeCB	CU	ND	pg/L	2.16	212	
74472-35-8 10	9-PeCB	C86					
38380-03-9 11	0-PeCB	BCJ	56.8	pg/L	2.20	212	
39635-32-0 11	1-PeCB	U	ND	pg/L	1.93	106	
74472-36-9 11	2-PeCB	U	ND	pg/L	2.24	106	
68194-10-5 11	3-PeCB	C90					
74472-37-0 11	4-PeCB	U	ND	pg/L	2.03	106	
74472-38-1 11	5-PeCB	C110					
18259-05-7 11	6-PeCB	C85					
68194-11-6 11	7-PeCB	C85					
31508-00-6 11	8-PeCB	BJ	37.6	pg/L	1.99	106	
56558-17-9 11	9-PeCB	C86					
68194-12-7 12	0-PeCB	U	ND	pg/L	2.31	106	
56558-18-0 12	1-PeCB	U	ND	pg/L	2.09	106	
76842-07-4 12	2-PeCB	U	ND	pg/L	2.90	106	
65510-44-3 12	3-PeCB	U	ND	pg/L	1.97	106	
70424-70-3 12	4-PeCB	C108					
74472-39-2 12	5-PeCB	C86					
57465-28-8 12	6-PeCB	U	ND	pg/L	2.41	106	
39635-33-1 12	7-PeCB	U	ND	pg/L	2.39	106	
38380-07-3 12	8-HxCB	CJ	11.6	pg/L	2.56	212	

Comments:

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

U Analyte was analyzed for, but not detected above the specified detection limit.

Cape Fear A	nalytical LLC					Report Date:	May 21, 2021
		Certific	Congeners ate of Analysis le Summary			Page 5	of 8
SDG Number: Lab Sample ID: Client Sample:	2104C54 : 18056002 1668A Water	Client: Date Collected: Date Received:	HALL001 04/29/2021 08:30 04/30/2021 10:05		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date:	2104C54-003G <mark>RG-Isleta</mark> -20210429 46817 05/17/2021 21:01	Method: Analyst:	EPA Method 1668A MJC		Prep Basis: Instrument:	As Received HRP875	
Data File: Prep Batch: Prep Date:	d17may21a-5 46738 04-MAY-21	Prep Method: Prep Aliquot:	SW846 3520C 945.3 mL		Dilution: Prep SOP Ref:	1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
55215-18-4 12	29-HxCB	CJ	83.8	pg/L	2.81	317	
52663-66-8 13	30-HxCB	J	5.54	pg/L	3.45	106	
61798-70-7 13	31-HxCB	U	ND	pg/L	3.41	106	
38380-05-1 13	32-HxCB	BJ	19.3	pg/L	3.09	106	
35694-04-3 13	33-HxCB	U	ND	pg/L	3.58	106	
52704-70-8 13	34-HxCB	U	ND	pg/L	3.49	106	
52744-13-5 13	35-HxCB	CU	ND	pg/L	19.4	212	
38411-22-2 13	36-HxCB	J	7.85	pg/L	1.44	106	
35694-06-5 13	37-HxCB	J	3.41	pg/L	2.71	106	
35065-28-2 13	38-HxCB	C129					
56030-56-9 13	39-HxCB	CU	ND	pg/L	2.81	212	
59291-64-4 14	40-HxCB	C139					
52712-04-6 14	41-HxCB	J	13.7	pg/L	3.09	106	
41411-61-4 14	42-HxCB	U	ND	pg/L	3.94	106	
	43-HxCB	U	ND	pg/L	3.83	106	
	14-HxCB	U	ND	pg/L	2.94	106	
	45-HxCB	U	ND	pg/L	1.23	106	
	46-HxCB	J	10.2	pg/L	2.67	106	
	47-HxCB	CJ	44.9	pg/L	2.84	212	
	48-HxCB	U	ND	pg/L	1.76	106	
	49-HxCB	C147		_			
	50-HxCB	U	ND	pg/L	1.23	106	
	51-HxCB	C135	N/D	~		105	
	52-HxCB	U	ND	pg/L	1.46	106	
	53-HxCB	CJ	54.5	pg/L	2.33	212	
	54-HxCB	U	ND	pg/L	1.40	106	
	55-HxCB	U	ND	pg/L	1.16	106	
	56-HxCB	CJ	9.61	pg/L	1.76	212	
	57-HxCB	C156	0.07	~		105	
74472-42-7 15	58-HxCB	J	8.27	pg/L	2.14	106	

U

U

ND

ND

1.48

2.39

pg/L

pg/L

106

106

Comments:

39635-35-3

41411-62-5

В The target analyte was detected in the associated blank.

С Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

159-HxCB

160-HxCB

U Analyte was analyzed for, but not detected above the specified detection limit.

Cape Fear An	alytical LLC					Report Date:	May 21, 2021
		Certific	Congeners ate of Analysis le Summary			Page 6	of 8
SDG Number: Lab Sample ID: Client Sample:	2104C54 18056002 1668A Water	Client: Date Collected: Date Received:	HALL001 04/29/2021 08:30 04/30/2021 10:05		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date:	2104C54-003G RG-Isleta -20210429 46817 05/17/2021 21:01	Method: Analyst:	EPA Method 1668A MJC		Prep Basis: Instrument:	As Received HRP875	
Data File: Prep Batch: Prep Date:	d17may21a-5 46738 04-MAY-21	Prep Method: Prep Aliquot:	SW846 3520C 945.3 mL		Dilution: Prep SOP Ref:	1	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
	1-HxCB	U	ND	pg/L	2.56	106	
	2-HxCB	U	ND	pg/L	1.31	106	
	3-HxCB	C129		10			
74472-45-0 164	4-HxCB	J	5.73	pg/L	2.39	106	
74472-46-1 165	5-HxCB	U	ND	pg/L	2.35	106	
41411-63-6 166	6-HxCB	C128					
52663-72-6 167	7-HxCB	BJ	4.21	pg/L	1.25	106	
59291-65-5 168	8-HxCB	C153					
32774-16-6 169	9-HxCB	U	ND	pg/L	1.50	106	
35065-30-6 170	0-НрСВ	J	21.6	pg/L	1.86	106	
52663-71-5 171	1-НрСВ	CU	ND	pg/L	6.41	212	
52663-74-8 172	2-НрСВ	U	ND	pg/L	4.53	106	
68194-16-1 173	3-НрСВ	C171					
38411-25-5 174	4-HpCB	J	21.4	pg/L	1.82	106	
40186-70-7 175	5-HpCB	U	ND	pg/L	1.50	106	
52663-65-7 176	6-HpCB	J	3.13	pg/L	1.18	106	
52663-70-4 177	7-НрСВ	J	12.6	pg/L	1.86	106	
52663-67-9 178	8-НрСВ	J	5.04	pg/L	1.65	106	
52663-64-6 179	9-НрСВ	J	8.29	pg/L	1.16	106	
35065-29-3 180	0-НрСВ	CJ	47.5	pg/L	1.48	212	
74472-47-2 181	1-НрСВ	U	ND	pg/L	1.57	106	
	2-НрСВ	U	ND	pg/L	1.44	106	
	3-НрСВ	CJ	15.1	pg/L	1.61	212	
	4-HpCB	U	ND	pg/L	1.02	106	
	5-HpCB	C183					
	6-HpCB	U	ND	pg/L	1.08	106	
	7-HpCB	J	23.1	pg/L	1.27	106	
	8-HpCB	U	ND	pg/L	1.16	106	
	9-HpCB	U	ND	pg/L	1.57	106	
	0-HpCB	J	4.82	pg/L	1.42	106	
	1-HpCB	U	ND	pg/L	1.38	106	

U

ND

pg/L

1.40

106

Comments:

74472-51-8

В The target analyte was detected in the associated blank.

С Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

192-HpCB

U Analyte was analyzed for, but not detected above the specified detection limit.

Cape Fear	Analytical LLC					Report Date:	May 21, 2021
		Certific	Congeners cate of Analysis ole Summary			Page 7	of 8
SDG Number Lab Sample I Client Sample	D: 18056002	Client: Date Collected: Date Received:	HALL001 04/29/2021 08:30 04/30/2021 10:05		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date: Data File: Prep Batch: Prep Date:	2104C54-003G RG-Isleta -20210429 46817 05/17/2021 21:01 d17may21a-5 46738 04-MAY-21	Method: Analyst: Prep Method: Prep Aliquot:	EPA Method 1668A MJC SW846 3520C 945.3 mL		Prep Basis: Instrument: Dilution: Prep SOP Ref:	As Received HRP875 1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
69782-91-8	193-НрСВ	C180					
35694-08-7	194-OcCB	J	12.8	pg/L	1.35	106	
52663-78-2	195-OcCB	J	4.65	pg/L	1.42	106	
42740-50-1	196-OcCB	J	6.45	pg/L	1.63	106	
33091-17-7	197-OcCB	CU	ND	pg/L	2.50	212	
68194-17-2	198-OcCB	CJ	15.3	pg/L	1.65	212	
52663-75-9	199-OcCB	C198					
52663-73-7	200-OcCB	C197					
40186-71-8	201-OcCB	U	ND	pg/L	1.90	106	
2136-99-4	202-OcCB	J	3.77	pg/L	1.33	106	
52663-76-0	203-OcCB	J	8.36	pg/L	1.44	106	
74472-52-9	204-OcCB	U	ND	pg/L	1.23	106	
74472-53-0	205-OcCB	U	ND	pg/L	1.02	106	
40186-72-9	206-NoCB	J	10.8	pg/L	1.57	106	
52663-79-3	207-NoCB	U	ND	pg/L	1.59	106	
52663-77-1	208-NoCB	J	4.10	pg/L	1.23	106	
2051-24-3	209-DeCB	U	ND	pg/L	5.59	106	
		_					

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1-MoCB		735	2120	pg/L	34.8	(15%-150%)
13C-3-MoCB		895	2120	pg/L	42.3	(15%-150%)
13C-4-DiCB		1050	2120	pg/L	49.8	(25%-150%)
13C-15-DiCB		1460	2120	pg/L	68.9	(25%-150%)
13C-19-TrCB		1500	2120	pg/L	70.9	(25%-150%)
13C-37-TrCB		1330	2120	pg/L	62.7	(25%-150%)
13C-54-TeCB		1150	2120	pg/L	54.2	(25%-150%)
13C-77-TeCB		1790	2120	pg/L	84.4	(25%-150%)
13C-81-TeCB		1840	2120	pg/L	86.8	(25%-150%)
13C-104-PeCB		1100	2120	pg/L	51.8	(25%-150%)
13C-105-PeCB		1520	2120	pg/L	72.0	(25%-150%)
13C-114-PeCB		1500	2120	pg/L	70.8	(25%-150%)
13C-118-PeCB		1460	2120	pg/L	69.1	(25%-150%)
13C-123-PeCB		1530	2120	pg/L	72.5	(25%-150%)
13C-126-PeCB		1670	2120	pg/L	78.8	(25%-150%)
13C-155-HxCB		1160	2120	pg/L	54.7	(25%-150%)
13C-156-HxCB	С	2790	4230	pg/L	66.0	(25%-150%)
13C-157-HxCB	C156L					
13C-167-HxCB		1430	2120	pg/L	67.6	(25%-150%)
13C-169-HxCB		1500	2120	pg/L	70.9	(25%-150%)
13C-188-HpCB		1200	2120	pg/L	56.9	(25%-150%)
13C-189-HpCB		1250	2120	pg/L	59.3	(25%-150%)

J

<mark>919</mark>

pg/L

106

Total PCB Congeners

1336-36-3

		Certific	Congeners ate of Analysis lle Summary		Page 8 of 8
SDG Number: Lab Sample ID: Client Sample:	2104C54 18056002 1668A Water	Client: Date Collected: Date Received:	HALL001 04/29/2021 08:30 04/30/2021 10:05	Project: Matrix:	HALL00113 WATER
Client ID: Batch ID:	2104C54-003G RG-Isleta-20210429 46817	Method:	EPA Method 1668A	Prep Basis:	As Received
Run Date: Data File:	05/17/2021 21:01 d17may21a-5	Analyst:	MJC	Instrument: Dilution:	HRP875 1
Prep Batch: Prep Date:	46738 04-MAY-21	Prep Method: Prep Aliquot:	SW846 3520C 945.3 mL	Prep SOP Ref:	CF-OA-E-001
CAS No.	Parmname	Qual	Result	Units EDL	PQL
Surrogate/Trace	r recovery (Qual Result	Nominal Units	Recovery% Acceptab	le Limits

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits	
13C-202-OcCB		1320	2120	pg/L	62.2	(25%-150%)	
13C-205-OcCB		1670	2120	pg/L	78.8	(25%-150%)	
13C-206-NoCB		1830	2120	pg/L	86.5	(25%-150%)	
13C-208-NoCB		1530	2120	pg/L	72.4	(25%-150%)	
13C-209-DeCB		1710	2120	pg/L	80.7	(25%-150%)	
13C-28-TrCB		1600	2120	pg/L	75.6	(30%-135%)	
13C-111-PeCB		1970	2120	pg/L	93.1	(30%-135%)	
13C-178-HpCB		2110	2120	pg/L	99.7	(30%-135%)	

Comments:

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

U Analyte was analyzed for, but not detected above the specified detection limit.

Quality Control Summary

Page 1 of 3

PCB Congeners Surrogate Recovery Report

SDG Number: 2104C54

Matrix Type: LIQUID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
12029213	LCS for batch 46738	13C-1-MoCB		36.6	(15%-140%)
		13C-3-MoCB		39.3	(15%-140%)
		13C-4-DiCB		48.7	(30%-140%)
		13C-15-DiCB		60.7	(30%-140%)
		13C-19-TrCB		60.7	(30%-140%)
		13C-37-TrCB		49.6	(30%-140%)
		13C-54-TeCB		48.4	(30%-140%)
		13C-77-TeCB		75.3	(30%-140%)
		13C-81-TeCB		78.5	(30%-140%)
		13C-104-PeCB		64.4	(30%-140%)
		13C-105-PeCB		75.1	(30%-140%)
		13C-114-PeCB		76.0	(30%-140%)
		13C-118-PeCB		73.8	(30%-140%)
		13C-123-PeCB		77.9	(30%-140%)
		13C-126-PeCB		80.2	(30%-140%)
		13C-155-HxCB		71.0	(30%-140%)
		13C-156-HxCB	С	79.5	(30%-140%)
		13C-157-HxCB	C156L		
		13C-167-HxCB		81.9	(30%-140%)
		13C-169-HxCB		83.9	(30%-140%)
		13C-188-HpCB		72.8	(30%-140%)
		13С-189-НрСВ		76.6	(30%-140%)
		13C-202-OcCB		77.4	(30%-140%)
		13C-205-OcCB		94.2	(30%-140%)
		13C-206-NoCB		101	(30%-140%)
		13C-208-NoCB		90.4	(30%-140%)
		13C-209-DeCB		91.9	(30%-140%)
		13C-28-TrCB		66.7	(40%-125%)
		13C-111-PeCB		84.9	(40%-125%)
		13С-178-НрСВ		91.6	(40%-125%)
029214	LCSD for batch 46738	13C-1-MoCB		43.3	(15%-140%)
		13C-3-MoCB		45.6	(15%-140%)
		13C-4-DiCB		56.2	(30%-140%)
		13C-15-DiCB		63.3	(30%-140%)
		13C-19-TrCB		63.3	(30%-140%)
		13C-37-TrCB		45.3	(30%-140%)
		13C-54-TeCB		45.4	(30%-140%)
		13C-77-TeCB		71.8	(30%-140%)
		13C-81-TeCB		74.0	(30%-140%)
		13C-104-PeCB		61.5	(30%-140%)
		13C-105-PeCB		68.5	(30%-140%)
		13C-114-PeCB		69.8	(30%-140%)
		13C-118-PeCB		68.0	(30%-140%)
		13C-118-PeCB 13C-123-PeCB		68.0 71.7	(30%-140%) (30%-140%)
		13C-118-PeCB 13C-123-PeCB 13C-126-PeCB		68.0 71.7 73.2	(30%-140%) (30%-140%) (30%-140%)
		13C-118-PeCB 13C-123-PeCB 13C-126-PeCB 13C-155-HxCB		68.0 71.7 73.2 68.5	(30%-140%) (30%-140%) (30%-140%) (30%-140%)
		13C-118-PeCB 13C-123-PeCB 13C-126-PeCB 13C-155-HxCB 13C-156-HxCB	C	68.0 71.7 73.2	(30%-140%) (30%-140%) (30%-140%)
		13C-118-PeCB 13C-123-PeCB 13C-126-PeCB 13C-155-HxCB 13C-156-HxCB 13C-157-HxCB	C C156L	68.0 71.7 73.2 68.5 74.1	(30%-140%) (30%-140%) (30%-140%) (30%-140%) (30%-140%)
		13C-118-PeCB 13C-123-PeCB 13C-126-PeCB 13C-155-HxCB 13C-156-HxCB 13C-157-HxCB 13C-167-HxCB		68.0 71.7 73.2 68.5 74.1 76.7	(30%-140%) (30%-140%) (30%-140%) (30%-140%) (30%-140%)
		13C-118-PeCB 13C-123-PeCB 13C-126-PeCB 13C-155-HxCB 13C-156-HxCB 13C-157-HxCB		68.0 71.7 73.2 68.5 74.1	(30%-140%) (30%-140%) (30%-140%) (30%-140%) (30%-140%)

Report Date: May 21, 2021

Page 2 of 3

PCB Congeners Surrogate Recovery Report

SDG Number: 2104C54

Matrix Type: LIQUID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
2029214	LCSD for batch 46738	13C-202-OcCB		69.4	(30%-140%)
		13C-205-OcCB		85.8	(30%-140%)
		13C-206-NoCB		92.3	(30%-140%)
		13C-208-NoCB		80.4	(30%-140%)
		13C-209-DeCB		80.7	(30%-140%)
		13C-28-TrCB		64.2	(40%-125%)
		13C-111-PeCB		81.2	(40%-125%)
		13С-178-НрСВ		85.9	(40%-125%)
029212	MB for batch 46738	13C-1-MoCB		44.0	(15%-150%)
		13C-3-MoCB		45.9	(15%-150%)
		13C-4-DiCB		56.2	(25%-150%)
		13C-15-DiCB		66.2	(25%-150%)
		13C-19-TrCB		64.9	(25%-150%)
		13C-37-TrCB		43.7	(25%-150%)
		13C-54-TeCB		46.1	(25%-150%)
		13C-77-TeCB		69.5	(25%-150%)
		13C-81-TeCB		73.3	(25%-150%)
		13C-104-PeCB		60.3	(25%-150%)
		13C-105-PeCB		63.2	(25%-150%)
		13C-114-PeCB		62.5	(25%-150%)
		13C-118-PeCB		61.2	(25%-150%)
		13C-123-PeCB		65.1	(25%-150%)
		13C-126-PeCB		65.1	(25%-150%)
		13C-155-HxCB	_	64.0	(25%-150%)
		13C-156-HxCB	С	67.7	(25%-150%)
		13C-157-HxCB	C156L	-	(250) 1500()
		13C-167-HxCB		70.6	(25%-150%)
		13C-169-HxCB		72.2	(25%-150%)
		13C-188-HpCB		57.6	(25%-150%)
		13C-189-HpCB		61.8	(25%-150%)
		13C-202-OcCB		61.3	(25%-150%)
		13C-205-OcCB		77.4	(25%-150%)
		13C-206-NoCB		81.6	(25%-150%)
		13C-208-NoCB		72.1	(25%-150%)
		13C-209-DeCB		70.6 77.4	(25%-150%) (20%-125%)
		13C-28-TrCB 13C-111-PeCB		77.4 85.5	(30%-135%) (30%-135%)
		13С-178-НрСВ		83.3 88.4	(30%-135%)
8056001	2104C54-001G RG-North-20210428	13C-1-MoCB		32.6	(15%-150%)
050001	210+03+-0010 KG-N0101-20210+20	13C-3-MoCB		39.5	(15%-150%)
		13C-4-DiCB		44.1	(25%-150%)
		13C-15-DiCB		44.1 65.9	(25%-150%)
		13C-19-TrCB		60.7	(25%-150%)
		13C-19-11CB		62.2	(25%-150%)
		13C-54-TeCB		49.4	(25%-150%)
		13C-77-TeCB		49.4 83.8	(25%-150%) (25%-150%)
		13C-81-TeCB		83.8 84.9	(25%-150%)
		13C-104-PeCB		84.9 48.1	(25%-150%) (25%-150%)
		13C-104-PeCB		48.1	(25%-150%) (25%-150%)
		13C-114-PeCB		68.9	(25%-150%) (25%-150%)
					(1)50% 1500%

Page 3 of 3

PCB Congeners Surrogate Recovery Report

SDG Number: 2104C54

Matrix Type: LIQUID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
8056001	2104C54-001G RG-North-20210428	13C-123-PeCB		71.3	(25%-150%)
		13C-126-PeCB		78.2	(25%-150%)
		13C-155-HxCB		55.0	(25%-150%)
		13C-156-HxCB	С	66.2	(25%-150%)
		13C-157-HxCB	C156L		
		13C-167-HxCB		67.3	(25%-150%)
		13C-169-HxCB		71.5	(25%-150%)
		13C-188-HpCB		61.8	(25%-150%)
		13С-189-НрСВ		60.8	(25%-150%)
		13C-202-OcCB		65.6	(25%-150%)
		13C-205-OcCB		79.6	(25%-150%)
		13C-206-NoCB		88.3	(25%-150%)
		13C-208-NoCB		74.7	(25%-150%)
		13C-209-DeCB		80.9	(25%-150%)
		13C-28-TrCB		67.8	(30%-135%)
		13C-111-PeCB		83.4	(30%-135%)
		13С-178-НрСВ		93.3	(30%-135%)
056002	2104C54-003G RG-Isleta-20210429	13C-1-MoCB		34.8	(15%-150%)
		13C-3-MoCB		42.3	(15%-150%)
		13C-4-DiCB		49.8	(25%-150%)
		13C-15-DiCB		68.9	(25%-150%)
		13C-19-TrCB		70.9	(25%-150%)
		13C-37-TrCB		62.7	(25%-150%)
		13C-54-TeCB		54.2	(25%-150%)
		13C-77-TeCB		84.4	(25%-150%)
		13C-81-TeCB		86.8	(25%-150%)
		13C-104-PeCB		51.8	(25%-150%)
		13C-105-PeCB		72.0	(25%-150%)
		13C-114-PeCB		70.8	(25%-150%)
		13C-118-PeCB		69.1	(25%-150%)
		13C-123-PeCB		72.5	(25%-150%)
		13C-126-PeCB		78.8	(25%-150%)
		13C-155-HxCB		54.7	(25%-150%)
		13C-156-HxCB	С	66.0	(25%-150%)
		13C-157-HxCB	C156L	0010	(20/0/100/0)
		13C-167-HxCB	01002	67.6	(25%-150%)
		13C-169-HxCB		70.9	(25%-150%)
		13C-188-HpCB		56.9	(25%-150%)
		13С-189-НрСВ		59.3	(25%-150%)
		13C-202-OcCB		62.2	(25%-150%)
		13C-205-OcCB		78.8	(25%-150%)
		13C-206-NoCB		86.5	(25%-150%)
		13C-208-NoCB		72.4	(25%-150%)
		13C-209-DeCB		80.7	(25%-150%)
		13C-28-TrCB		75.6	(30%-135%)
		13C-111-PeCB		93.1	(30%-135%)
		1.7.7.11.1.1.5.10		10.1	(30/0=133/0)

* Recovery outside Acceptance Limits

Column to be used to flag recovery values

D Sample Diluted

CAS No. 2051-60-7

2051-62-9

13029-08-8

2050-68-2 38444-73-4

38444-90-5

15968-05-5

32598-13-3

70362-50-4

56558-16-8

32598-14-4

74472-37-0 31508-00-6

65510-44-3

57465-28-8

33979-03-2

38380-08-4

69782-90-7

52663-72-6

32774-16-6

74487-85-7

39635-31-9

2136-99-4

74472-53-0

40186-72-9

52663-77-1

2051-24-3

of 2

Page 1

PCB Congeners Quality Control Summary Spike Recovery Report

SDG Number:	2104C54
Client ID:	LCS for batch 46738
Lab Sample ID:	12029213
Instrument:	HRP875
Analyst:	MJC

LCS

123-PeCB

126-PeCB

155-HxCB

156-HxCB

157-HxCB

167-HxCB

169-HxCB

188-HpCB

189-HpCB

202-OcCB

205-OcCB

206-NoCB

208-NoCB

209-DeCB

Sample Type:Laboratory Control SampleMatrix:WATER

Analysis Date: 05/07/2021 17:48 Prep Batch ID:46738

Dilution: 1

Batch ID: 46817		Batch ID:	46817
-----------------	--	-----------	-------

		Amount	Spike	D	A
		Added	Conc.	Recovery	Acceptance
	Parmname	pg/L	pg/L	%	Limits
LCS	1-MoCB	500	385	77	50-150
LCS	3-MoCB	500	432	86.4	50-150
LCS	4-DiCB	500	417	83.5	50-150
LCS	15-DiCB	500	466	93.3	50-150
LCS	19-TrCB	500	457	91.4	50-150
LCS	37-TrCB	500	429	85.8	50-150
LCS	54-TeCB	1000	1010	101	50-150
LCS	77-TeCB	1000	840	84	50-150
LCS	81-TeCB	1000	719	71.9	50-150
LCS	104-PeCB	1000	1020	102	50-150
LCS	105-PeCB	1000	838	83.8	50-150
LCS	114-PeCB	1000	1020	102	50-150
LCS	118-PeCB	1000	987	98.7	50-150

С

C156

877

927

958

2010

932

872

932

903

1540

1300

1290

1510

1400

87.7

92.7

95.8

101

93.2

87.2

93.2

90.3

103

86.5

86.2

101

93.5

50-150

50-150

50-150

50-150

50-150

50-150

50-150

50-150

50-150

50-150

50-150

50-150

50-150

1000

1000

1000

2000

1000

1000

1000

1000

1500

1500

1500

1500

1500

of 2

Page 2

PCB Congeners Quality Control Summary Spike Recovery Report

SDG Number:	2104C54
Client ID:	LCSD for batch 46738
Lab Sample ID:	12029214
Instrument:	HRP875
Analyst:	MJC

Sample Type:Laboratory Control Sample DuplicateMatrix:WATER

Analysis Date: 05/07/2021 18:56 Dilution: 1 Prep Batch ID:46738

Batch ID: 46817

			Amount Added	Spike Conc.	Recovery	Acceptance	RPD	Acceptance
CAS No.		Parmname	pg/L	pg/L	%	Limits	%	Limits
2051-60-7	LCSD	1-MoCB	500	400	80	50-150	3.89	0-20
2051-62-9	LCSD	3-MoCB	500	437	87.4	50-150	1.20	0-20
13029-08-8	LCSD	4-DiCB	500	430	86	50-150	3.01	0-20
2050-68-2	LCSD	15-DiCB	500	476	95.2	50-150	2.03	0-20
38444-73-4	LCSD	19-TrCB	500	461	92.1	50-150	0.807	0-20
38444-90-5	LCSD	37-TrCB	500	414	82.9	50-150	3.46	0-20
15968-05-5	LCSD	54-TeCB	1000	1020	102	50-150	0.597	0-20
32598-13-3	LCSD	77-TeCB	1000	846	84.6	50-150	0.757	0-20
70362-50-4	LCSD	81-TeCB	1000	725	72.5	50-150	0.911	0-20
56558-16-8	LCSD	104-PeCB	1000	1040	104	50-150	2.23	0-20
32598-14-4	LCSD	105-PeCB	1000	858	85.8	50-150	2.35	0-20
74472-37-0	LCSD	114-PeCB	1000	1040	104	50-150	2.29	0-20
31508-00-6	LCSD	118-PeCB	1000	1020	102	50-150	3.28	0-20
65510-44-3	LCSD	123-PeCB	1000	907	90.7	50-150	3.31	0-20
57465-28-8	LCSD	126-PeCB	1000	942	94.2	50-150	1.66	0-20
33979-03-2	LCSD	155-HxCB	1000	1020	102	50-150	6.27	0-20
38380-08-4	LCSD	156-HxCB	2000 C	2050	103	50-150	2.09	0-20
69782-90-7	LCSD	157-HxCB	Cl	56				
52663-72-6	LCSD	167-HxCB	1000	961	96.1	50-150	3.12	0-20
32774-16-6	LCSD	169-HxCB	1000	899	89.9	50-150	3.00	0-20
74487-85-7	LCSD	188-HpCB	1000	977	97.7	50-150	4.67	0-20
39635-31-9	LCSD	189-HpCB	1000	927	92.7	50-150	2.67	0-20
2136-99-4	LCSD	202-OcCB	1500	1580	105	50-150	1.98	0-20
74472-53-0	LCSD	205-OcCB	1500	1330	88.7	50-150	2.57	0-20
40186-72-9	LCSD	206-NoCB	1500	1310	87.5	50-150	1.55	0-20
52663-77-1	LCSD	208-NoCB	1500	1560	104	50-150	3.28	0-20
2051-24-3	LCSD	209-DeCB	1500	1480	98.6	50-150	5.32	0-20

Method Blank Summary

Page 1 of 1

SDG Number:	2104C54	Client:	HALL001	Matrix:	WATER
Client ID:	MB for batch 46738	Instrument ID:	HRP875	Data File:	d07may21a-5
Lab Sample ID:	12029212	Prep Date:	04-MAY-21	Analyzed:	05/07/21 20:05
Column:		•			

This method blank applies to the following samples and quality control samples:

Client Sample ID	Lab Sample ID	File ID	Date Analyzed	Time Analyzed	
01 LCS for batch 46738	12029213	d07may21a-3	05/07/21	1748	
02 LCSD for batch 46738	12029214	d07may21a-4	05/07/21	1856	
03 2104C54-001G RG-North-20210428	18056001	d17may21a-4	05/17/21	1952	
04 2104C54-003G RG-Isleta-20210429	18056002	d17may21a-5	05/17/21	2101	

Cape Fear A	nalytical LLC					Report Date:	May 21, 2021
		Certifi	3 Congeners cate of Analysis ple Summary			Page 1	of 8
SDG Number: Lab Sample ID Client Sample:	2104C54 : 12029212 QC for batch 46738	Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date: Data File:	MB for batch 46738 46817 05/07/2021 20:05 d07may21a-5	Method: Analyst:	EPA Method 1668A MJC		Prep Basis: Instrument: Dilution:	As Received HRP875 1	
Prep Batch: Prep Date:	46738 04-MAY-21	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
2051-60-7 1-	MoCB	J	3.02	pg/L	1.00	100	
2051-61-8 2-	MoCB	J	3.58	pg/L	1.46	100	
2051-62-9 3-	MoCB	J	3.78	pg/L	1.30	100	
13029-08-8 4-	DiCB	U	ND	pg/L	14.8	100	
16605-91-7 5-	DiCB	U	ND	pg/L	14.7	100	
25569-80-6 6-	DiCB	U	ND	pg/L	14.1	100	
33284-50-3 7-	DiCB	U	ND	pg/L	12.6	100	
34883-43-7 8-	DiCB	U	ND	pg/L	12.7	100	
34883-39-1 9-	DiCB	U	ND	pg/L	16.0	100	
33146-45-1 10)-DiCB	U	ND	pg/L	10.3	100	
2050-67-1 11	1-DiCB	J	42.3	pg/L	15.7	100	
2974-92-7 12	2-DiCB	CU	ND	pg/L	14.2	200	
	3-DiCB	C12					
	4-DiCB	U	ND	pg/L	15.2	100	
	5-DiCB	U	ND	pg/L	15.1	100	
	5-TrCB	U	ND	pg/L	2.26	100	
	7-TrCB	U	ND	pg/L	2.36	100	
	3-TrCB	CJ	3.26	pg/L	1.96	200	
	9-TrCB	U	ND	pg/L	2.08	100	
)-TrCB	CU	ND	pg/L	4.92	200	
	I-TrCB	CU	ND	pg/L	3.36	200	
	2-TrCB	U	ND	pg/L	1.56	100	
	3-TrCB	U	ND	pg/L	1.54	100	
55702-45-9 24	4-TrCB	U	ND	pg/L	1.68	100	

U

U

CU

C20

C26

C18

J

U

ND

ND

ND

3.26

ND

1.40

1.70

1.86

1.64

1.66

pg/L

pg/L

pg/L

pg/L

pg/L

100

200

100

100

100

Comments:

55712-37-3

38444-81-4

38444-76-7

7012-37-5

15862-07-4

35693-92-6

16606-02-3

38444-77-8

25-TrCB

26-TrCB

27-TrCB

28-TrCB

29-TrCB

30-TrCB

31-TrCB

32-TrCB

С Congener has coeluters. When Cxxx, refer to congener number xxx for data

- Q Quantitative Interference; value is estimated
- Ū Analyte was analyzed for, but not detected above the specified detection limit.

J Value is estimated

Cape Fear An	iaiyiicai LLC					Report Date:	May 21, 202
			B Congeners			Page 2	of 8
			cate of Analysis				
		Sam	ple Summary				
SDG Number:	2104C54	Client:	HALL001		Project:	HALL00113	
Lab Sample ID:					Matrix:	WATER	
Client Sample: Client ID:	QC for batch 46738				Drop Dogige	A g Dessived	
Batch ID:	MB for batch 46738 46817	Method:	EPA Method 1668A		Prep Basis:	As Received	
Run Date:	05/07/2021 20:05	Analyst:	MJC		Instrument:	HRP875	
Data File:	d07may21a-5		GWO AC AFAAC		Dilution:	1 CE OA E 001	
Prep Batch: Prep Date:	46738 04-MAY-21	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Prep SOP Ref:	CF-OA-E-001	
-	04-IVIA 1-21						
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
	-TrCB	C21					
	-TrCB	U	ND	pg/L	1.88	100	
	-TrCB	U	ND	pg/L	2.42	100	
	-TrCB	U	ND	pg/L	2.18	100	
	-TrCB	U	ND	pg/L	2.52	100	
	-TrCB	U U	ND	pg/L	2.40	100	
	-TrCB -TeCB	CU	ND ND	pg/L pg/L	1.98 2.62	100 200	
	-TeCB	U	ND	pg/L pg/L	3.98	100	
	-TeCB	U	ND	pg/L	2.88	100	
	-TeCB	U	ND	pg/L	3.26	100	
	-TeCB	CJ	6.86	pg/L	2.80	300	
70362-45-7 45-	-TeCB	CJ	2.40	pg/L	1.34	200	
41464-47-5 46	-TeCB	U	ND	pg/L	1.42	100	
2437-79-8 47-	-TeCB	C44					
70362-47-9 48-	-TeCB	U	ND	pg/L	2.80	100	
41464-40-8 49-	-TeCB	CU	ND	pg/L	2.64	200	
62796-65-0 50-	-TeCB	CJ	1.56	pg/L	1.26	200	
68194-04-7 51-	-TeCB	C45					
35693-99-3 52-	-TeCB	J	7.36	pg/L	3.44	200	
	-TeCB	C50					
	-TeCB	U	ND	pg/L	1.00	100	
	-TeCB	U	ND	pg/L	2.16	100	
	-TeCB	U	ND	pg/L	2.82	100	
	-TeCB	U	ND	pg/L	2.36	100	
	-TeCB	U	ND	pg/L	2.18	100	
	-TeCB	CU	ND	pg/L	2.30	300	
	-TeCB	U	ND	pg/L	2.14	100	
	-TeCB	CJ C50	8.86	pg/L	2.20	400	
	-TeCB	C59	ND	n∼/ĭ	2.20	100	
74472-34-7 63-	-TeCB	U	ND	pg/L	2.38	100	

U

ND

pg/L

2.12

100

Comments:

52663-58-8

С Congener has coeluters. When Cxxx, refer to congener number xxx for data

64-TeCB

- Q Quantitative Interference; value is estimated
- Ū Analyte was analyzed for, but not detected above the specified detection limit.

Value is estimated J

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	CR reived 75
Samular Summa's Client:Parple Summa's Project:Project	CR reived 75
SDG Number: 2104C54 Client: HALL001 Project: HALL Matrix: WATT Lient Sample: QC for batch 46738 Prep Batch Prep Batch Prep Basis: As Ree Batch ID: 46817 Method: EPA Method 1668A Instrument: HRP3 Run Date: 05/07/2021 20:05 Analyst: MJC Prep Basis: As Ree Prep Batch: 04738 Prep Method: EPA Method 1668A Instrument: HRP3 Prep Batch: 04738 Prep Method: EVA Method 3520C Instrument: HRP3 Prep Batch: 04738 Prep Method: Sw846 3520C I000 mL Prep Statch CF-04 3284-54-7 65-TeCB C44 100 1 440 pg/L 2.44 100 32598-10-0 66-TeCB J 4.40 pg/L 1.98 100 32598-10-0 66-TeCB U ND pg/L 1.94 100 32598-11-1 70-TeCB C49 1.94 100 1.94 100 22598-11-1 70-TeCB C40 ND	CR reived 75
Lab Sample ID:12029212 QC for batch 46738Matrix:MATrix::MATrix::MATrix::MATrix::MATrix::MATrix::MATrix::MATrix::MATrix::MATrix::MATrix::MATrix::MATrix::MATrix::MATrix::MATrix::33244-7164-7504MDMDMDMD <td< td=""><td>CR reived 75</td></td<>	CR reived 75
Client Sample:QC for batch 46738Prep Basis:As RecClient ID:MB for batch 46738Method: $EPA Method 1668A$ Prep Basis:As RecBatch ID: 46817 Method: $EPA Method 1668A$ Instrument: $HRP8'$ Run Date: $007/0201 20.05$ Analyst:MJCInstrument: $HRP8'$ Data File: $d07may 21a-5$ Prep Method:SW846 3520CPrep SOP Ret: $CF-0A$ Prep Batch: 46738 Prep Method:SW846 3520CPrep SOP Ret: $CF-0A$ Tota File: $04-MAY-21$ Prep Aliquot: $1000 mL$ Prep SOP Ret: $CF-0A$ 3284-547 $65-TeCB$ C44 $C1000 mL$ 2.44 1000 3284-547 $65-TeCB$ C44 2.44 1000 37375-538 $67-TeCB$ UNDpg/L 2.44 1000 $23284-547$ $65-TeCB$ UNDpg/L 2.44 1000 $37375-538$ $67-TeCB$ UNDpg/L 2.44 1000 $23324-16$ $07-TeCB$ UNDpg/L 2.44 1000 $23324-16$ $07-TeCB$ C49 1.94 1000 1.94 1000 $23324-16$ $07-TeCB$ C49 1.94 1000 1.94 1000 $23324-17$ $07-TeCB$ C49 1.94 1.94 1000 $23324-10$ $07-TeCB$ C49 1.94 1.94 1.94 $2398-13.1$ $07-TeCB$ C49 1.94 1.94 1.94 1.94 <th>reived 75</th>	reived 75
Client ID: MB for batch 46738 Method: EPA Method 1668A Prep Basis: As Rec Batch ID: 46817 Method: EPA Method 1668A Instrument: HRP3 Data File: d07/n3y21a-5 Prep Method: SW846 3520C Prep SOP Ref CF-0/ Prep Batch: 46738 Prep Method: SW846 3520C Prep SOP Ref CF-0/ 3284-54.7 65-TeCB C44 CF-0/ Prep Soc CF-0/ 3284-54.7 65-TeCB C44 0000 mL Prep Nethod: SW846 3520C Prep Soc CF-0/ 3284-54.7 65-TeCB Qual Result Units EDL PQL 3284-54.7 65-TeCB U ND pg/L 1.00 00 32598-10-0 66-TeCB U ND pg/L 1.09 100 32598-11-1 70-TeCB U ND pg/L 1.09 100 41464-44-0 71-TeCB C61 1.00 1.00 1.00 1.00 <td< th=""><th>75</th></td<>	75
Batch ID: Run Date: 05/07/2021 20:05 Data File: Prep Batch: 06/07/2021 20:05 Prep Batch: 06/782 014-MAY-21Method: Analyst: Prep Method: Prep Method: Prep Method: 0000 mLEPA Method 1668A MJC MJC SW846 3520C 1000 mLInstrument: Prep SOP Re: 10HR PS 10CAS No.ParnnameQualResultUnitsEDLPC3284-54765-TecBC44	75
Run Date: Data File: Prep Batch: 46738 Prep Date:95/07/2021 20:05 d0/may21a-5 46738 46738 46738 04-MAY-21Analyst: Prep Method: Prep Aliquot:MJCInstrument: Prep Method: 1000 mLMIPS' Dilution: Prep Method: 1000 mLSW846 3520C Dilution: Prep Method: 1000 mLSW846 3520C Dilution: Prep Method: 1000 mLMICInstrument: Dilution: Prep Method: Dilution: Dilution: Dilution: Prep Method: 1000 mLSW846 3520C BW846 3520CInstrument: Dilution: Prep Method: BW846 3520CMICInstrument: Dilution: Dilution: Dilution: Dilution: Prep Method: BW846 3520CSW846 3520C BW846 3520CMICInstrument: Dilution: Dilut	
Prep Batch: 46738 04-MAY-21 Prep Method: Prep Aliquot: SW846 3520C 1000 mL Prep SOP Ref. CF-04 3284-54-7 65-TeCB C44 100 Result Units EDL PQL 3284-54-7 65-TeCB C44 100 19/L 2.44 100 32598-10-0 66-TeCB J 4.40 pg/L 2.44 100 7357-53-8 67-TeCB U ND pg/L 1.98 100 60233-24-1 69-TeCB C49 100 100 100 100 100 60233-24-1 69-TeCB C49 100 <t< th=""><th>ь-Е-001</th></t<>	ь-Е-001
Prep Date: 04-MAY-21 Prep Aliquet: 1000 mL CAS No. Parmname Qual Result Units EDL PQL 3324-54-7 65-TeCB C44 32598-10.0 66-TeCB J 4.40 pg/L 2.44 100 7357-53-8 67-TeCB U ND pg/L 1.98 100 7357-53-8 67-TeCB U ND pg/L 1.94 100 60233-24.1 69-TeCB C49 1.94 100 60233-24.1 69-TeCB C40 1.94 100 60233-24.1 69-TeCB C61 1.94 100 60233-24.1 70-TeCB C61 1.94 100 7375-52 75-TeCB C61 2.26 100 7438-23-1 73-TeCB C61 2.28 100 </th <th>а-Е-001</th>	а- Е-001
CAS No. Parmname Qual Result Units EDL PQL 33284-54.7 65-TeCB C44	
33284-54-7 65-TeCB C44 32598-10-0 66-TeCB J 4.40 pg/L 2.44 100 7357-53-8 67-TeCB U ND pg/L 1.98 100 7357-53-8 67-TeCB U ND pg/L 1.94 100 60233-24-1 69-TeCB C49	
32598-10-0 66-TeCB J 4.40 pg/L 2.44 100 73575-53-8 67-TeCB U ND pg/L 1.98 100 73575-52-7 68-TeCB U ND pg/L 1.94 100 60233-24-1 69-TeCB C49 - <	
73575-53-8 67-TeCB U ND pg/L 1.98 100 73575-52-7 68-TeCB U ND pg/L 1.94 100 60233-24-1 69-TeCB C49	
73575-52-7 68-TeCB U ND pg/L 1.94 100 60233-24-1 69-TeCB C49 -	
60233-24-1 69-TeCB C49 32598-11-1 70-TeCB C61 41464-46-4 71-TeCB C40 41464-42-0 72-TeCB C40 41464-42-0 72-TeCB U ND pg/L 2.26 100 74338-23-1 73-TeCB U ND pg/L 2.28 100 32690-93-0 74-TeCB C61	
32598-11-1 70-TeCB C61 41464-464 71-TeCB C40 41464-420 72-TeCB U ND pg/L 2.26 100 74338-23-1 73-TeCB U ND pg/L 2.28 100 32690-93-0 74-TeCB C61	
41464-46-4 71-TeCB C40 41464-42-0 72-TeCB U ND pg/L 2.26 100 74338-23-1 73-TeCB U ND pg/L 2.28 100 32690-93-0 74-TeCB C61	
41464-42-072-TeCBUNDpg/L2.261007438-23-173-TeCBUNDpg/L2.2810032690-93-074-TeCBC6132598-12-275-TeCBC5970362-48-076-TeCBC6132598-13-377-TeCBJ3.52pg/L2.3810070362-49-178-TeCBUNDpg/L2.6810041464-48-679-TeCBUNDpg/L2.341003284-52-580-TeCBUNDpg/L2.02100	
74338-23-1 73-TeCB U ND pg/L 2.28 100 32690-93-0 74-TeCB C61 -	
32690-93-0 74-TeCB C61 32598-12-2 75-TeCB C59 70362-48-0 76-TeCB C61 32598-13-3 77-TeCB J 3.52 pg/L 2.38 100 70362-49-1 78-TeCB U ND pg/L 2.68 100 41464-48-6 79-TeCB U ND pg/L 2.34 100 3284-52-5 80-TeCB U ND pg/L 2.02 100	
32598-12-2 75-TeCB C59 70362-48-0 76-TeCB C61 32598-13-3 77-TeCB J 3.52 pg/L 2.38 100 70362-49-1 78-TeCB U ND pg/L 2.68 100 41464-48-6 79-TeCB U ND pg/L 2.34 100 3284-52-5 80-TeCB U ND pg/L 2.02 100	
70362-48-0 76-TeCB C61 32598-13-3 77-TeCB J 3.52 pg/L 2.38 100 70362-49-1 78-TeCB U ND pg/L 2.68 100 41464-48-6 79-TeCB U ND pg/L 2.34 100 3284-52-5 80-TeCB U ND pg/L 2.02 100	
32598-13-377-TeCBJ3.52pg/L2.3810070362-49-178-TeCBUNDpg/L2.6810041464-48-679-TeCBUNDpg/L2.3410032284-52-580-TeCBUNDpg/L2.02100	
70362-49-1 78-TeCB U ND pg/L 2.68 100 41464-48-6 79-TeCB U ND pg/L 2.34 100 33284-52-5 80-TeCB U ND pg/L 2.02 100	
41464-48-6 79-TeCB U ND pg/L 2.34 100 33284-52-5 80-TeCB U ND pg/L 2.02 100	
33284-52-5 80-TeCB U ND pg/L 2.02 100	
/0302-30-4 81-TeCB U ND pg/L 2.12 100	
52663-62-4 82-PeCB U ND pg/L 2.56 100	
52663-62-4 82-PeCB U ND pg/L 2.56 100 60145-20-2 83-PeCB U ND pg/L 2.96 100	
52663-60-2 84-PeCB U ND pg/L 2.24 100	
65510-45-4 85-PeCB CJ 3.10 pg/L 1.74 300	
55312-69-1 86-PeCB CJ 7.30 pg/L 1.82 600	
38380-02-8 87-PeCB C86	
55215-17-3 88-PeCB CU ND pg/L 2.18 200	
73575-57-2 89-PeCB U ND pg/L 2.68 100	
68194-07-0 90-PeCB CU ND pg/L 5.60 300	
68194-05-8 91-PeCB C88	
52663-61-3 92-PeCB U ND pg/L 2.48 100	
73575-56-1 93-PeCB CU ND pg/L 2.02 200	
73575-55-0 94-PeCB U ND pg/L 2.02 100	
38379-99-6 95-PeCB J 5.62 pg/L 2.46 100	
73575-54-9 96-PeCB U ND pg/L 1.24 100	

Comments:

С Congener has coeluters. When Cxxx, refer to congener number xxx for data

- Value is estimated J
- Q Quantitative Interference; value is estimated
- Ū Analyte was analyzed for, but not detected above the specified detection limit.

Cape Fear An	nalytical LLC					Report Date:	May 21, 2021
			B Congeners			Page 4	of 8
		Certifi	cate of Analysis				
		Sam	ple Summary				
SDG Number:	2104C54	Client:	HALL001		Project:	HALL00113	
Lab Sample ID:					Matrix:	WATER	
Client Sample:	QC for batch 46738						
Client ID:	MB for batch 46738		FDA M-4L - J 1//9A		Prep Basis:	As Received	
Batch ID: Run Date:	46817 05/07/2021 20:05	Method: Analyst:	EPA Method 1668A MJC		Instrument:	HRP875	
Data File:	d07may21a-5	111111,500	1.200		Dilution:	1	
Prep Batch:	46738	Prep Method:	SW846 3520C		Prep SOP Ref:	CF-OA-E-001	
Prep Date:	04-MAY-21	Prep Aliquot:	1000 mL				
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
41464-51-1 97	7-PeCB	C86					
60233-25-2 98	3-PeCB	CU	ND	pg/L	2.02	200	
38380-01-7 99	9-PeCB	U	ND	pg/L	1.94	100	
39485-83-1 10	00-PeCB	C93					
37680-73-2 10)1-PeCB	C90					
68194-06-9 10	02-PeCB	C98					
60145-21-3 10)3-PeCB	U	ND	pg/L	2.22	100	
56558-16-8 10)4-PeCB	U	ND	pg/L	0.880	100	
32598-14-4 10)5-PeCB	U	ND	pg/L	3.74	100	
70424-69-0 10)6-PeCB	U	ND	pg/L	1.94	100	
70424-68-9 10)7-PeCB	U	ND	pg/L	1.66	100	
)8-PeCB	CU	ND	pg/L	3.08	200	
	09-PeCB	C86					
	10-PeCB	CJ	6.34	pg/L	1.60	200	
	11-PeCB	U	ND	pg/L	1.42	100	
	2-PeCB	U	ND	pg/L	1.52	100	
	I3-PeCB	C90		_			
	I4-PeCB	J	2.30	pg/L	1.78	100	
	15-PeCB	C110					
	I6-PeCB	C85					
	17-PeCB	C85	5 22		1.76	100	
	l8-PeCB l9-PeCB	J C86	5.32	pg/L	1.76	100	
		C86 U	ND	ne/I	1 70	100	
	20-PeCB 21-PeCB	U	ND ND	pg/L	1.70 1.42	100	
	21-PeCB 22-PeCB	U	ND	pg/L	2.48	100	
	22-PeCB 23-PeCB	U	ND	pg/L pg/L	1.72	100	
	24-PeCB	C108		h8\r	1.12	100	
	25-PeCB	C86					
	26-PeCB	U	ND	pg/L	2.20	100	
	27-PeCB	U	ND	pg/L pg/L	2.20	100	
38380-07-3 12	28-HxCB	CU	ND	pg/L	2.72	200	

Comments:

С Congener has coeluters. When Cxxx, refer to congener number xxx for data

Ū Analyte was analyzed for, but not detected above the specified detection limit.

Value is estimated J

Q Quantitative Interference; value is estimated

Cape Fear A	nalytical LLC					Report Date:	May 21, 2021
		Certifi	3 Congeners cate of Analysis ple Summary			Page 5	of 8
SDG Number: Lab Sample ID Client Sample:	b: 12029212	Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date:	MB for batch 46738 46817 05/07/2021 20:05	Method: Analyst:	EPA Method 1668A MJC		Prep Basis: Instrument:	As Received HRP875	
Data File: Prep Batch: Prep Date:	d07may21a-5 46738 04-MAY-21	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Dilution: Prep SOP Ref:	1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
55215-18-4 1	29-HxCB	CJ	6.50	pg/L	2.22	300	
52663-66-8 1	30-HxCB	U	ND	pg/L	2.62	100	
61798-70-7 1	31-HxCB	U	ND	pg/L	2.48	100	
38380-05-1 1	32-HxCB	J	2.38	pg/L	2.26	100	
35694-04-3 1	33-HxCB	U	ND	pg/L	2.64	100	
52704-70-8 1	34-HxCB	U	ND	pg/L	2.54	100	
52744-13-5 1	35-HxCB	CU	ND	pg/L	2.64	200	
38411-22-2 1	36-HxCB	U	ND	pg/L	1.22	100	
35694-06-5 1	37-HxCB	U	ND	pg/L	2.20	100	
35065-28-2 1	38-HxCB	C129					
56030-56-9 1	39-HxCB	CU	ND	pg/L	2.10	200	
59291-64-4 1	40-HxCB	C139					
52712-04-6 1	41-HxCB	U	ND	pg/L	2.18	100	
41411-61-4 1	42-HxCB	U	ND	pg/L	2.68	100	
68194-15-0 1	43-HxCB	U	ND	pg/L	2.62	100	
68194-14-9 1	44-HxCB	U	ND	pg/L	1.62	100	
74472-40-5 1	45-HxCB	U	ND	pg/L	1.06	100	
51908-16-8 1	46-HxCB	U	ND	pg/L	2.06	100	
68194-13-8 1	47-HxCB	CJ	4.22	pg/L	2.06	200	
74472-41-6 1	48-HxCB	U	ND	pg/L	1.54	100	
38380-04-0 1	49-HxCB	C147					
68194-08-1 1	50-HxCB	U	ND	pg/L	1.02	100	
52663-63-5 1	51-HxCB	C135					
68194-09-2 1	52-HxCB	U	ND	pg/L	1.22	100	
	53-HxCB	CJ	4.86	pg/L	1.82	200	
	54-HxCB	U	ND	pg/L	1.24	100	
33979-03-2 1	55-HxCB	U	ND	pg/L	1.02	100	
38380-08-4 1	56-HxCB	CU	ND	pg/L	4.44	200	
69782-90-7 1	57-HxCB	C156					
74472-42-7 1	58-HxCB	U	ND	pg/L	1.60	100	
39635-35-3 1	59-HxCB	U	ND	pg/L	2.00	100	

U

ND

pg/L

1.70

100

Comments:

41411-62-5

С Congener has coeluters. When Cxxx, refer to congener number xxx for data

160-HxCB

Q Quantitative Interference; value is estimated

Ū Analyte was analyzed for, but not detected above the specified detection limit.

Value is estimated J

Cape Fear A	Analytical LLC					Report Date:	May 21, 2021
			B Congeners			Page 6	of 8
		Certifi	cate of Analysis				
		Sam	ple Summary				
SDG Number:	: 2104C54	Client:	HALL001		Project:	HALL00113	
Lab Sample II					Matrix:	WATER	
Client Sample							
Client ID: Batch ID:	MB for batch 46738	M-41 - J.	EPA Method 1668A		Prep Basis:	As Received	
Run Date:	46817 05/07/2021 20:05	Method: Analyst:	MJC		Instrument:	HRP875	
Data File:	d07may21a-5				Dilution:	1	
Prep Batch:	46738	Prep Method:	SW846 3520C		Prep SOP Ref:	CF-OA-E-001	
Prep Date:	04-MAY-21	Prep Aliquot:	1000 mL				
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
74472-43-8	161-HxCB	U	ND	pg/L	1.82	100	
	162-HxCB	U	ND	pg/L	1.80	100	
74472-44-9	163-HxCB	C129					
	164-HxCB	U	ND	pg/L	1.72	100	
74472-46-1	165-HxCB	U	ND	pg/L	1.72	100	
	166-HxCB	C128					
	167-HxCB	J	2.26	pg/L	1.88	100	
	168-HxCB	C153					
	169-HxCB	J	3.00	pg/L	2.16	100	
	170-HpCB	U	ND	pg/L	2.60	100	
	171-HpCB	CU	ND	pg/L	2.50	200	
	172-HpCB	U C171	ND	pg/L	2.56	100	
	173-НрСВ 174-НрСВ	U	ND	pg/L	2.28	100	
	175-НрСВ	U	ND	pg/L pg/L	1.98	100	
	176-НрСВ	U	ND	pg/L pg/L	1.58	100	
	177-НрСВ	U	ND	pg/L	2.54	100	
	178-HpCB	U	ND	pg/L	2.12	100	
	179-HpCB	U	ND	pg/L	1.50	100	
	180-HpCB	CJ	4.12	pg/L	2.02	200	
74472-47-2	181-HpCB	U	ND	pg/L	2.20	100	
60145-23-5	182-HpCB	U	ND	pg/L	1.92	100	
52663-69-1	183-HpCB	CU	ND	pg/L	2.22	200	
74472-48-3	184-HpCB	U	ND	pg/L	1.32	100	
52712-05-7	185-HpCB	C183					
74472-49-4	186-HpCB	U	ND	pg/L	1.42	100	
52663-68-0	187-HpCB	U	ND	pg/L	2.84	100	
74487-85-7	188-HpCB	U	ND	pg/L	1.50	100	
39635-31-9	189-HpCB	J	2.36	pg/L	1.76	100	
41411-64-7	190-НрСВ	U	ND	pg/L	2.00	100	
74472-50-7	191-НрСВ	U	ND	pg/L	1.88	100	
74472-51-8	192-HpCB	U	ND	pg/L	1.84	100	

Comments:

С Congener has coeluters. When Cxxx, refer to congener number xxx for data

Q Quantitative Interference; value is estimated

Ū Analyte was analyzed for, but not detected above the specified detection limit.

Value is estimated J

Cape Fear	Analytical LLC					Report Date:	May 21, 2021
		Certifi	3 Congeners cate of Analysis ple Summary			Page 7	of 8
SDG Number Lab Sample I Client Sample	D: 12029212	Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date: Data File:	MB for batch 46738 46817 05/07/2021 20:05 d07may21a-5	Method: Analyst:	EPA Method 1668A MJC		Prep Basis: Instrument: Dilution:	As Received HRP875 1	
Prep Batch: Prep Date:	46738 04-MAY-21	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
69782-91-8	193-НрСВ	C180					
35694-08-7	194-OcCB	U	ND	pg/L	2.66	100	
52663-78-2	195-OcCB	U	ND	pg/L	2.08	100	
42740-50-1	196-OcCB	U	ND	pg/L	1.94	100	
33091-17-7	197-OcCB	CU	ND	pg/L	1.38	200	
68194-17-2	198-OcCB	CU	ND	pg/L	1.92	200	
52663-75-9	199-OcCB	C198					
52663-73-7	200-OcCB	C197					
40186-71-8	201-OcCB	U	ND	pg/L	1.36	100	
2136-99-4	202-OcCB	U	ND	pg/L	1.58	100	
52663-76-0	203-OcCB	U	ND	pg/L	1.66	100	
74472-52-9	204-OcCB	U	ND	pg/L	1.44	100	
74472-53-0	205-OcCB	U	ND	pg/L	1.48	100	
40186-72-9	206-NoCB	U	ND	pg/L	2.06	100	
52663-79-3	207-NoCB	U	ND	pg/L	1.54	100	
52663-77-1	208-NoCB	U	ND	pg/L	1.48	100	
2051-24-3	209-DeCB	U	ND	pg/L	3.30	100	
1336-36-3	Total PCB Congeners	J	154	pg/L		100	

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1-MoCB		881	2000	pg/L	44.0	(15%-150%)
13С-3-МоСВ		917	2000	pg/L	45.9	(15%-150%)
13C-4-DiCB		1120	2000	pg/L	56.2	(25%-150%)
13C-15-DiCB		1320	2000	pg/L	66.2	(25%-150%)
13C-19-TrCB		1300	2000	pg/L	64.9	(25%-150%)
13C-37-TrCB		875	2000	pg/L	43.7	(25%-150%)
13C-54-TeCB		922	2000	pg/L	46.1	(25%-150%)
13C-77-TeCB		1390	2000	pg/L	69.5	(25%-150%)
13C-81-TeCB		1470	2000	pg/L	73.3	(25%-150%)
13C-104-PeCB		1210	2000	pg/L	60.3	(25%-150%)
13C-105-PeCB		1260	2000	pg/L	63.2	(25%-150%)
13C-114-PeCB		1250	2000	pg/L	62.5	(25%-150%)
13C-118-PeCB		1220	2000	pg/L	61.2	(25%-150%)
13C-123-PeCB		1300	2000	pg/L	65.1	(25%-150%)
13C-126-PeCB		1300	2000	pg/L	65.1	(25%-150%)
13C-155-HxCB		1280	2000	pg/L	64.0	(25%-150%)
13C-156-HxCB	С	2710	4000	pg/L	67.7	(25%-150%)
13C-157-HxCB	C156L					
13C-167-HxCB		1410	2000	pg/L	70.6	(25%-150%)
13C-169-HxCB		1440	2000	pg/L	72.2	(25%-150%)
13С-188-НрСВ		1150	2000	pg/L	57.6	(25%-150%)
3С-189-НрСВ		1240	2000	pg/L	61.8	(25%-150%)

			ertific	Congene ate of An le Summ	alysis			Page 8	of 8
SDG Number: Lab Sample ID: Client Sample:	2104C54 12029212 QC for batch 46738	Client:		HALL001			Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID:	MB for batch 46738 46817	Method:		EPA Meth	1668A		Prep Basis:	As Received	
Run Date: Data File:	05/07/2021 20:05 d07may21a-5	Analyst:		MJC			Instrument: Dilution:	HRP875 1	
Prep Batch: Prep Date:	46738 04-MAY-21	Prep Met Prep Aliq		SW846 35 1000 mL	520C		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual		Result		Units	EDL	PQL	
Surrogate/Trace	r recovery	Qual Re	sult	Nominal	Units	Recovery	% Acceptable	e Limits	
12C 202 O-CD		10	20	2000		(1.2	(250) 15	00()	

13C-202-OcCB	1230	2000	pg/L	61.3	(25%-150%)
13C-205-OcCB	1550	2000	pg/L	77.4	(25%-150%)
13C-206-NoCB	1630	2000	pg/L	81.6	(25%-150%)
13C-208-NoCB	1440	2000	pg/L	72.1	(25%-150%)
13C-209-DeCB	1410	2000	pg/L	70.6	(25%-150%)
13C-28-TrCB	1550	2000	pg/L	77.4	(30%-135%)
13C-111-PeCB	1710	2000	pg/L	85.5	(30%-135%)
13C-178-HpCB	1770	2000	pg/L	88.4	(30%-135%)

Comments:

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

Q Quantitative Interference; value is estimated

U Analyte was analyzed for, but not detected above the specified detection limit.

Cape Fear A	nalytical LLC					Report Date:	May 21, 202
		Certifi	B Congeners cate of Analysis ple Summary			Page 1	of 2
SDG Number: Lab Sample ID Client Sample:		Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date:	LCS for batch 46738 46817 05/07/2021 17:48	Method: Analyst:	EPA Method 1668A MJC		Prep Basis: Instrument:	As Received HRP875	
Data File: Prep Batch: Prep Date:	d07may21a-3 46738 04-MAY-21	Analyst: Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Dilution:	1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
2051-60-7 1	-MoCB		385	pg/L	1.88	100	
2051-62-9 3	-MoCB		432	pg/L	2.20	100	
13029-08-8 4	-DiCB		417	pg/L	14.7	100	
2050-68-2 1	5-DiCB		466	pg/L	9.44	100	
38444-73-4 1	9-TrCB		457	pg/L	2.26	100	
38444-90-5 3	7-TrCB		429	pg/L	8.48	100	
15968-05-5 54	4-TeCB		1010	pg/L	1.16	100	
32598-13-3 7	7-TeCB		840	pg/L	5.44	100	
70362-50-4 8	l-TeCB		719	pg/L	4.92	100	
56558-16-8 1	04-PeCB		1020	pg/L	0.940	100	
32598-14-4 1	05-PeCB		838	pg/L	4.76	100	
74472-37-0 1	14-PeCB		1020	pg/L	4.30	100	
31508-00-6 1	18-PeCB		987	pg/L	4.22	100	
65510-44-3 1	23-PeCB		877	pg/L	4.26	100	
57465-28-8 1	26-PeCB		927	pg/L	5.34	100	
33979-03-2 1	55-HxCB		958	pg/L	0.880	100	
38380-08-4 1	56-HxCB	С	2010	pg/L	3.38	200	
69782-90-7 1	57-HxCB	C156					
52663-72-6 1	67-HxCB		932	pg/L	2.48	100	
32774-16-6 1	69-HxCB		872	pg/L	2.92	100	
74487-85-7 1	88-HpCB		932	pg/L	1.06	100	
39635-31-9 1	89-НрСВ		903	pg/L	2.04	100	
2136-99-4 2	02-OcCB		1540	pg/L	9.12	100	
74472-53-0 2	05-OcCB		1300	pg/L	1.78	100	
40186-72-9 2	06-NoCB		1290	pg/L	2.42	100	
52663-77-1 2	08-NoCB		1510	pg/L	1.76	100	
	0.0 P 0P			~		100	

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1-MoCB		731	2000	pg/L	36.6	(15%-140%)
13C-3-MoCB		786	2000	pg/L	39.3	(15%-140%)
13C-4-DiCB		973	2000	pg/L	48.7	(30%-140%)
13C-15-DiCB		1210	2000	pg/L	60.7	(30%-140%)
13C-19-TrCB		1210	2000	pg/L	60.7	(30%-140%)
13C-37-TrCB		992	2000	pg/L	49.6	(30%-140%)
13C-54-TeCB		967	2000	pg/L	48.4	(30%-140%)
13C-77-TeCB		1510	2000	pg/L	75.3	(30%-140%)
13C-81-TeCB		1570	2000	pg/L	78.5	(30%-140%)
13C-104-PeCB		1290	2000	pg/L	64.4	(30%-140%)
13C-105-PeCB		1500	2000	pg/L	75.1	(30%-140%)
13C-114-PeCB		1520	2000	pg/L	76.0	(30%-140%)
13C-118-PeCB		1480	2000	pg/L	73.8	(30%-140%)

1400

pg/L

2.60

100

2051-24-3

209-DeCB

Cupe Fear An	aiyiicai LLC							Report Date.	Wiay 21, 2021
			Certifi	B Congener cate of Ana ple Summa	alysis			Page 2	of 2
SDG Number: Lab Sample ID: Client Sample:	2104C54 12029213 QC for batch 46738	Clie	nt:	HALL001			Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date: Data File: Prep Batch:	LCS for batch 46738 46817 05/07/2021 17:48 d07may21a-3 46738	Ana Prej	hod: lyst: p Method:	EPA Meth MJC SW846 35			Prep Basis: Instrument: Dilution: Prep SOP Ref:	As Received HRP875 1 CF-OA-E-001	
Prep Date:	04-MAY-21	Prej	p Aliquot:	1000 mL		T	FDI	DOI	
CAS No.	Parmname		Qual	Result		Units	EDL	PQL	
Surrogate/Trace	r recovery	Qual	Result	Nominal	Units	Recovery%	6 Acceptabl	e Limits	
13C-123-PeCB			1560	2000	pg/L	77.9	(30%-14	40%)	
13C-126-PeCB			1600	2000	pg/L	80.2	(30%-14	40%)	
13C-155-HxCB			1420	2000	pg/L	71.0	(30%-14	40%)	
13C-156-HxCB		С	3180	4000	pg/L	79.5	(30%-14	40%)	
13C-157-HxCB		C156L							
13C-167-HxCB			1640	2000	pg/L	81.9	(30%-14	40%)	
13C-169-HxCB			1680	2000	pg/L	83.9	(30%-14	40%)	
13C-188-HpCB			1460	2000	pg/L	72.8	(30%-14	40%)	
13C-189-HpCB			1530	2000	pg/L	76.6	(30%-14	40%)	
13C-202-OcCB			1550	2000	pg/L	77.4	(30%-14	40%)	
13C-205-OcCB			1880	2000	pg/L	94.2	(30%-14	40%)	

2000

2000

2000

2000

2000

2000

pg/L

pg/L

pg/L

pg/L

pg/L

pg/L

101

90.4

91.9

66.7

84.9

91.6

(30%-140%)

(30%-140%)

(30%-140%)

(40%-125%)

(40%-125%)

(40%-125%)

2020

1810

1840

1330

1700

1830

13C-209-DeCB 13C-28-TrCB 13C-111-PeCB

13C-206-NoCB

13C-208-NoCB

13C-178-HpCB Comments:

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

Cape Fear A	Analytical LLC					Report Date:	May 21, 202
		Certifi	3 Congeners cate of Analysis ple Summary			Page 1	of 2
SDG Number: Lab Sample II Client Sample	D: 12029214	Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID:	LCSD for batch 46738 46817	Method:	EPA Method 1668A		Prep Basis:	As Received	
Run Date: Data File:	05/07/2021 18:56 d07may21a-4	Analyst:	MJC		Instrument: Dilution:	HRP875 1	
Prep Batch: Prep Date:	46738 04-MAY-21	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
2051-60-7	1-MoCB		400	pg/L	1.90	100	
2051-62-9	3-MoCB		437	pg/L	2.42	100	
13029-08-8	4-DiCB		430	pg/L	13.5	100	
2050-68-2	15-DiCB		476	pg/L	19.2	100	
38444-73-4	19-TrCB		461	pg/L	2.68	100	
38444-90-5	37-TrCB		414	pg/L	7.02	100	
5968-05-5	54-TeCB		1020	pg/L	1.18	100	
32598-13-3	77-TeCB		846	pg/L	7.48	100	
70362-50-4	81-TeCB		725	pg/L	6.90	100	
56558-16-8	104-PeCB		1040	pg/L	1.06	100	
32598-14-4	105-PeCB		858	pg/L	4.86	100	
74472-37-0	114-PeCB		1040	pg/L	4.38	100	
31508-00-6	118-PeCB		1020	pg/L	4.30	100	
55510-44-3	123-PeCB		907	pg/L	4.30	100	
57465-28-8	126-PeCB		942	pg/L	5.40	100	
33979-03-2	155-HxCB		1020	pg/L	1.00	100	
38380-08-4	156-HxCB	С	2050	pg/L	6.24	200	
59782-90-7	157-HxCB	C156					
52663-72-6	167-HxCB		961	pg/L	4.50	100	
32774-16-6	169-HxCB		899	pg/L	5.36	100	
4487-85-7	188-HpCB		977	pg/L	1.42	100	
89635-31-9	189-HpCB		927	pg/L	2.08	100	
2136-99-4	202-OcCB		1580	pg/L	1.56	100	
74472-53-0	205-OcCB		1330	pg/L	1.98	100	
40186-72-9	206-NoCB		1310	pg/L	2.60	100	
52663-77-1	208-NoCB		1560	pg/L	1.98	100	
2051 24 2	200 D CD		1.400	σ	2.12	100	

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1-MoCB		867	2000	pg/L	43.3	(15%-140%)
13C-3-MoCB		912	2000	pg/L	45.6	(15%-140%)
13C-4-DiCB		1120	2000	pg/L	56.2	(30%-140%)
13C-15-DiCB		1270	2000	pg/L	63.3	(30%-140%)
13C-19-TrCB		1270	2000	pg/L	63.3	(30%-140%)
13C-37-TrCB		905	2000	pg/L	45.3	(30%-140%)
13C-54-TeCB		908	2000	pg/L	45.4	(30%-140%)
13C-77-TeCB		1440	2000	pg/L	71.8	(30%-140%)
13C-81-TeCB		1480	2000	pg/L	74.0	(30%-140%)
13C-104-PeCB		1230	2000	pg/L	61.5	(30%-140%)
13C-105-PeCB		1370	2000	pg/L	68.5	(30%-140%)
13C-114-PeCB		1400	2000	pg/L	69.8	(30%-140%)
13C-118-PeCB		1360	2000	pg/L	68.0	(30%-140%)

1480

pg/L

3.12

100

2051-24-3 209-DeCB

(30%-140%)

(30%-140%)

(40% - 125%)

(40%-125%)

(40%-125%)

Cape Fear An	alytical LLC							Report Date:	May 21, 202
			Certifi	3 Congene cate of An ple Summa	alysis			Page 2	of 2
SDG Number: Lab Sample ID: Client Sample:	2104C54 12029214 QC for batch 46738	Clie	ent:	HALL001			Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date: Data File: Prep Batch:	LCSD for batch 46738 46817 05/07/2021 18:56 d07may21a-4 46738	Ana	thod: dyst: p Method:	EPA Meth MJC SW846 35			Prep Basis: Instrument: Dilution: Prep SOP Ref:	As Received HRP875 1 CF-OA-E-001	
Prep Date:	04-MAY-21		p Aliquot:	1000 mL	200				
CAS No.	Parmname		Qual	Result		Units	EDL	PQL	
Surrogate/Trace	r recovery	Qual	Result	Nominal	Units	Recovery%	6 Acceptabl	e Limits	
13C-123-PeCB			1430	2000	pg/L	71.7	(30%-14	40%)	
13C-126-PeCB			1460	2000	pg/L	73.2	(30%-14	40%)	
13C-155-HxCB			1370	2000	pg/L	68.5	(30%-14	40%)	
13C-156-HxCB		С	2960	4000	pg/L	74.1	(30%-14	40%)	
13C-157-HxCB		C156L							
13C-167-HxCB			1530	2000	pg/L	76.7	(30%-14	40%)	
13C-169-HxCB			1560	2000	pg/L	78.2	(30%-14	40%)	
13C-188-HpCB			1270	2000	pg/L	63.3	(30%-14	40%)	
13C-189-HpCB			1390	2000	pg/L	69.6	(30%-14	40%)	
13C-202-OcCB			1390	2000	pg/L	69.4	(30%-14	40%)	
13C-205-OcCB			1720	2000	pg/L	85.8	(30%-14	40%)	
13C-206-NoCB			1850	2000	pg/L	92.3	(30%-14	40%)	

1610

1610

1280

1620

1720

2000

2000

2000

2000

2000

pg/L

pg/L

pg/L

pg/L

pg/L

80.4

80.7

64.2

81.2

85.9

13C-178-HpCB Comments:

13C-208-NoCB

13C-209-DeCB

13C-28-TrCB

13C-111-PeCB

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

Pace Analytical® ANALYTICAL REPORT June 01, 2021

Hall Environmental Analysis Laboratory

Sample Delivery Group:

L1346065 04/30/2021

Samples Received:

Project Number:

Description:

Report To:

Jackie Bolte

Entire Report Reviewed By: John V Howkins

John Hawkins Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

ACCOUNT: Hall Environmental Analysis Laboratory

SDG: L1346065

DATE/TIME: 06/01/21 08:21 PAGE: 1 of 10

Тс Ss Cn Sr ʹQc Gl A Sc

TABLE OF CONTENTS

Cp: Cover Page		1
Tc: Table of Contents		2
Ss: Sample Summary		3
Cn: Case Narrative		4
Sr: Sample Results		5
2104C54-0011 RG-NORTH-20210428	L1346065-01	5
2104C54-003I RG-ISLETA-20210429	L1346065-02	6
Qc: Quality Control Summary		7
Radiochemistry by Method 900		7
GI: Glossary of Terms		8
Al: Accreditations & Locations		9
Sc: Sample Chain of Custody		10

SAMPLE SUMMARY

2104C54-0011 RG-NORTH-20210428 L1346065-01 Water	Non-Pot	able	Collected by	Collected date/time 04/28/2112:30	Received dat 04/30/21 09:	
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
diochemistry by Method 900	WG1676923	1	05/26/21 13:10	05/28/21 22:57	JMR	Mt. Juliet, TN
2104C54-003I RG-ISLETA-20210429 L1346065-02 Water	Non-Pot	table	Collected by	Collected date/time 04/29/21 08:30	Received dat 04/30/21 09: ⁻	
N ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
vietnou			date/time	date/time		

GI

A

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

V How Kins

John Hawkins Project Manager

SDG: L1346065

DATE/TIME: 06/01/21 08:21 PAGE: 4 of 10

2104C54-0011 RG-NORTH-20210428 Collected date/time: 04/28/2112:30

SAMPLE RESULTS - 01

Radiochemistry by Method 900

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l		+/-	pCi/l	date / time		
GROSS ALPHA	2.96		0.776	0.832	05/28/2021 22:57	<u>WG1676923</u>	
COC requested adju							
gross alpha be repor							
AMAFCA spoke with							
HEAL about result &							
reporting. Per HEAL	the						
adjusted gross alpha	t will						
be be lower than the							
gross alpha reported							
here, both of which a	are						
well below the WQS	of 15						
pCi/l.							
•							

SDG: L1346065

2104C54-0031 RG-ISLETA-20210429 Collected date/time: 04/29/21 08:30

SAMPLE RESULTS - 02

Radiochemistry by Method 900

	Result	Qualifier	Uncertainty	MDA	Analysis Date	Batch	
Analyte	pCi/l		+ / -	pCi/l	date / time		
GROSS ALPHA	4.32		0.983	1.02	05/28/2021 22:57	WG1676923	
COC requested ad	ljusted						
gross alpha be rep	orted.						
AMAFCA spoke wi	ith						
HEAL about result	&						
reporting. Per HEA	L the						
adjusted gross alpl	ha will						
be be lower than th							
gross alpha reporte	ed						
here, both of which							
well below the WQ							
pCi/I.							

WG1676923

Radiochemistry by Method 900

QUALITY CONTROL SUMMARY L1346065-01,02

Method Blank (MB)

Method Blank	(MB)								
(MB) R3661069-1 0	MB) R3661069-1 05/28/21 22:57								
	MB Result	MB Qualifier	MB MDA						
Analyte	pCi/l		pCi/l						
GROSS ALPHA	-0.263	U	0.504						

L1346065-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1346065-02 05/28/	DS) L1346065-02 05/28/21 22:57 • (DUP) R3661069-5 05/28/21 22:57									
	Original Result	DUP Result	Dilution	DUP RPD	DUP RER	DUP Qualifier	DUP RPD Limits	DUP RER Limit		
Analyte	pCi/l	pCi/l		%			%			
GROSS ALPHA	4.32	5.73	1	28.1	0.880		20	3		

Laboratory Control Sample (LCS)

(LCS) R3661069-2 05	6/28/21 22:57				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	pCi/l	pCi/l	%	%	
GROSS ALPHA	15.0	13.7	91.3	80.0-120	

L1346065-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1346065-01 05/28/	(OS) L1346065-01 05/28/21 22:57 • (MS) R3661069-3 05/28/21 22:57 • (MSD) R3661069-4 05/28/21 22:57												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	MS RER	RPD Limits
Analyte	pCi/l	pCi/l	pCi/l	pCi/l	%	%		%			%		%
GROSS ALPHA	18.8	2.96	23.3	23.3	108	108	1	70.0-130			0.000		20

SDG: L1346065 Cn

Sr

Qc

GI

Â

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDA	Minimum Detectable Activity.
Rec.	Recovery.
RER	Replicate Error Ratio.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resul reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

U

Below Detectable Limits: Indicates that the analyte was not detected.

SDG: L1346065 Τс

Ss

Cn

Sr

Qc

GI

AI

ACCREDITATIONS & LOCATIONS

Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

CHAIN OF CUSTODY RECORD PAGE: 1 OF:

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

B158

SUB CON	NTRATOR: Pace T	COMPANY: PACE	TN		PHONE:	(800) 767-5859 FAX: (615) 758-5859				
ADDRES	C.	Lebanon Rd			ACCOUNT #:	EMAIL:				
CITY, ST	ATE, ZIP: Mt. Ju	liet, TN 37122								
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINERS ANALYTIC	LIB4665 CAL COMMENTS			
	and the second se	RG-North-20210428	500HDPEH2	Aqueous	4/28/2021 12:30:00 PM	1 COD				
2	2104C54-001I	RG-North-20210428	1LHDPEHNO	Aqueous	4/28/2021 12:30:00 PM	1 Adjusted Gross Alpha	-01			
3	2104C54-001J	RG-North-20210428	120mL	Aqueous	4/28/2021 12:30:00 PM	1 Cr 6				
4	2104C54-003H	RG-Isleta-20210429	500HDPEH2	Aqueous	4/29/2021 8:30:00 AM	1 COD				
		RG-Isleta-20210429	1LHDPEHNO	Aqueous	4/29/2021 8:30:00 AM	1 Adjusted Gross Alpha	-02			
11.1	1	RG-Isleta-20210429	120mL	Aqueous	4/29/2021 8:30:00 AM	1 Cr 6				

Sample Receipt Checklist	
COC Signed (Description of Applicable	
Bottles worked Accurace;N VOA Zero Headspace:	Y
Correct bottles used:	1_1
Sufficient volume sent:	
RAD Screen <0.5 mR/hr: N	

5016 1223 7735

SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

TIME AND DEC TIME AND	Relinquished By:	Date: 4/29/2021	Time: 11:53 AM	Received By:	Date:	Time:	REPORT TRANSMITTAL DESIRED:
Relinquished By: Date: Inne. Received Dy. UNIV/V U130/21 0917 TAT: Standard X RUSH Next BD 2nd BD 3rd BD Temp of samples Attempt to Cool?	Relinquished By:	Date:	Time:	Received By:	Date:	Time:	FOR LAB USE ONLY
TAT: Standard 🕅 RUSH Next BD 🗌 2nd BD 🗌 3rd BD	Relinquished By:	Date:	Time:	Received By:	4730/21	TIME 915	
	TAT: Stand	lard 🔀	RUSH		3rd BI		Comments:

AMAFCA

Project: CMC				
Sample ID: MB-59819	SampType: MBLK	TestCode: EPA Method	1664B	
Client ID: PBW	Batch ID: 59819	RunNo: 77203		
Prep Date: 5/5/2021	Analysis Date: 5/5/2021	SeqNo: 2737669	Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
N-Hexane Extractable Material	ND 10.0			
Sample ID: LCS-59819	SampType: LCS	TestCode: EPA Method	1664B	
Client ID: LCSW	Batch ID: 59819	RunNo: 77203		
Prep Date: 5/5/2021	Analysis Date: 5/5/2021	SeqNo: 2737670	Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
N-Hexane Extractable Material	35.6 10.0 40.00	0 89.0 78	114	
Sample ID: LCSD-59819	SampType: LCSD	TestCode: EPA Method	1664B	
Client ID: LCSS02	Batch ID: 59819	RunNo: 77203		
Prep Date: 5/5/2021	Analysis Date: 5/5/2021	SeqNo: 2737671	Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
N-Hexane Extractable Material	35.2 10.0 40.00	0 88.0 78	114 1.13	20

Qualifiers:

Client:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 7 of 19

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

2104C54 01-Jun-21

WO#:

Client:	AMAFCA				
Project:	CMC				

Sample ID: MB-59770	SampType: MBLK TestCode: EPA Method			200.7: Metals					
Client ID: PBW	Batch ID: 5	ID: 59770 RunNo: 77121							
Prep Date: 5/3/2021	Analysis Date:	5/4/2021	S	SeqNo: 2	734655	Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	ND 1.0)							
Chromium	ND 0.006								
Magnesium	ND 1.0)							
Sample ID: LLLCS-59770	SampType: LCSLL TestCode: EPA Method 200.7: Metals								
Client ID: BatchQC	Batch ID: 5	9770	RunNo: 77121						
Prep Date: 5/3/2021	Analysis Date:	5/4/2021	SeqNo: 2734657			Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	0.57 1.0	0.5000	0	113	50	150			J
Chromium	0.0067 0.006	0.006000	0	112	50	150			
Magnesium	0.55 1.0	0.5000	0	111	50	150			J
Sample ID: LCS-59770	SampType: LCS TestCode: EPA Method 200.7: Metals								
Client ID: LCSW	Batch ID: 5	RunNo: 77121							
	Analysis Date: 5/4/2021		SeqNo: 2734659		11				
Prep Date: 5/3/2021	Analysis Date:	5/4/2021	5	SeqNo: 2	734659	Units: mg/L			
Prep Date: 5/3/2021 Analyte	Analysis Date:		SPK Ref Val	SeqNo: 2 %REC	734659 LowLimit	HighLimit	%RPD	RPDLimit	Qual
		SPK value		•		Ū	%RPD	RPDLimit	Qual
Analyte	Result PQL	SPK value) 50.00	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Client: Project:		AMAFCA CMC	L									
Sample ID:	МВ		Samp	Type:	MBLK	Tes	tCode: El	PA 200.8: I	Dissolved Met	als		
Client ID:	PBW		Bat	ch ID:	B77076	F	RunNo: 7	7076				
Prep Date:			Analysis	Date:	4/30/2021	S	SeqNo: 2	732177	Units: mg/L			
Analyte			Result	PQ	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Copper Lead			ND ND	0.001 0.0005								
Sample ID:	LCSLL		Samp	Туре:	LCSLL	Tes	tCode: El	PA 200.8: I	Dissolved Met	als		
Client ID:	BatchQ	C	Bat	ch ID:	B77076	F	RunNo: 7	7076				
Prep Date:			Analysis	Date:	4/30/2021	S	SeqNo: 2	732178	Units: mg/L			
Analyte			Result	PQ	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Copper			0.0010	0.001	0.001000	0	103	50	150			
Lead			0.00052	0.0005	50 0.0005000	0	104	50	150			
Sample ID:	LCS		Samp	Type:	LCS	Tes	tCode: El	PA 200.8: I	Dissolved Met	als		
Client ID:	LCSW		Bat	ch ID:	B77076	F	RunNo: 7	7076				
Prep Date:			Analysis	Date:	4/30/2021	S	SeqNo: 2	732179	Units: mg/L			
Analyte			Result	PQ	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Copper			0.024	0.001	0.02500	0	96.9	85	115			
Lead			0.012	0.0005	50 0.01250	0	97.7	85	115			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Page 9 of 19

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: AMAFCA Project: CMC Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: R77061 RunNo: 77061 Prep Date: Analysis Date: 4/29/2021 SegNo: 2731791 Units: mg/L

Thep Date.	Analysis D	ale. 4/	29/2021	L. L.		131191	Units. Ing/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Nitrite (As N)	ND	0.10								
Nitrogen, Nitrate (As N)	ND	0.10								
Sample ID: LCS	SampT	ype: Ics	5	Tes	tCode: El	PA Method	300.0: Anions	S		
Client ID: LCSW	Batch	n ID: R7	7061	RunNo: 77061						
Prep Date:	Analysis D	ate: 4/	29/2021	5	SeqNo: 2	731792	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Nitrite (As N)	0.95	0.10	1.000	0	94.6	90	110			
Nitrogen, Nitrate (As N)	2.5	0.10	2.500	0	99.8	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Client:AMAProject:CMO	AFCA C									
Sample ID: MB-59722	SampTy	pe: ME	BLK	Tes	tCode: El	PA Method	8081: PESTI	CIDES		
Client ID: PBW	Batch	ID: 59 7	722	F	RunNo: 7	7329				
Prep Date: 4/30/2021	Analysis Da	ite: 5/	11/2021	S	SeqNo: 2	744012	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Dieldrin	ND	0.10								
Surr: Decachlorobiphenyl	2.5		2.500		99.8	41.7	129			
Surr: Tetrachloro-m-xylene	2.0		2.500		78.2	31.8	88.5			
Sample ID: MB-59722	SampTy	pe: ME	BLK	TestCode: EPA Method 8081: PESTICIE						
Client ID: PBW	Batch	ID: 597	722	F	RunNo: 7	7329				
Prep Date: 4/30/2021	Analysis Da	ite: 5/	11/2021	5	SeqNo: 2	744013	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Dieldrin	ND	0.10								
Surr: Decachlorobiphenyl	2.5		2.500		98.7	41.7	129			
Surr: Tetrachloro-m-xylene	2.0		2.500		79.1	31.8	88.5			
Sample ID: LCS-59722	SampTy	pe: LC	s	Tes	tCode: El	PA Method	8081: PESTI	CIDES		
Client ID: LCSW	Batch	ID: 597	722	F	RunNo: 7	7329				
Prep Date: 4/30/2021	Analysis Da	ite: 5/	11/2021	S	SeqNo: 2	744014	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Dieldrin	0.44	0.10	0.5000	0	88.0	17.4	145			
Surr: Decachlorobiphenyl	2.4		2.500		97.8	41.7	129			
Surr: Tetrachloro-m-xylene	1.6		2.500		62.6	31.8	88.5			
Sample ID: LCS-59722	SampTy	pe: LC	s	Tes	tCode: El	PA Method	8081: PESTI	CIDES		
Client ID: LCSW	Batch	ID: 597	722	F	RunNo: 7	7329				
Prep Date: 4/30/2021	Analysis Da	ite: 5/	11/2021	5	SeqNo: 2	744015	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Dieldrin	0.44	0.10	0.5000	0	88.7	17.4	145			
Surr: Decachlorobiphenyl	2.5		2.500		99.5	41.7	129			
Surr: Tetrachloro-m-xylene	1.7		2.500		66.2	31.8	88.5			
Sample ID: LCSD-59722	SampTy	pe: LC	SD	Tes	tCode: El	PA Method	8081: PESTI	CIDES		
Client ID: LCSS02	Batch	ID: 597	722	F	RunNo: 7	7329				
Prep Date: 4/30/2021	Analysis Da	ite: 5/	11/2021	S	SeqNo: 2	744016	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Dieldrin	0.42	0.10	0.5000	0	83.7	17.4	145	5.05	20	
Surr: Decachlorobiphenyl	2.3		2.500		91.0	41.7	129	0	20	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#: 2104C54 01-Jun-21

Client: AMAFCA Р ΛС

Project:	CM
----------	----

Sample ID: LCSD-59722	SampT	Гуре: LC	SD	TestCode: EPA Method 8081: PESTICIDES						
Client ID: LCSS02	Batch ID: 59722			RunNo: 77329						
Prep Date: 4/30/2021	Analysis Date: 5/11/2021			SeqNo: 2744017			Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Dieldrin	0.41	0.10	0.5000	0	83.0	17.4	145	6.63	20	
Surr: Decachlorobiphenyl	2.2		2.500		89.7	41.7	129	0	20	
Surr: Tetrachloro-m-xylene	1.5		2.500		58.2	31.8	88.5	0	20	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 12 of 19

Client: AMAFCA **Project:** CMC

Sample ID: MB-59737	SampType: MBLK	TestCode: SM5210B: B	OD			
Client ID: PBW	Batch ID: 59737	RunNo: 77198				
Prep Date: 4/30/2021	Analysis Date: 5/5/2021	SeqNo: 2737436	Units: mg/L			
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Biochemical Oxygen Demand	ND 2.0					
Sample ID: LCS-59737	SampType: LCS	TestCode: SM5210B: B	OD			
Client ID: LCSW	Batch ID: 59737	Duplic 77400				
	Baton ib. Color	RunNo: 77198				
Prep Date: 4/30/2021	Analysis Date: 5/5/2021	SeqNo: 2737437	Units: mg/L			
Prep Date: 4/30/2021 Analyte	Analysis Date: 5/5/2021		0	%RPD	RPDLimit	Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

Page 13 of 19

RL Reporting Limit

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

Client:	AMAFCA										
Project:	CMC										
Sample ID: MB-	-59720	SampT	ype: ME	BLK	Tes	tCode: SI	M 9223B Fe	ecal Indicator	E. coli N	/IPN	
Client ID: PBV	N	Batch	ID: 59	720	F	RunNo: 7	7078				
Prep Date: 4/2	29/2021	Analysis D	ate: 4/	30/2021	S	eqNo: 27	732197	Units: MPN/	100mL		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
E. Coli		<1	1.000								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#: 2104C54 01-Jun-21

Client: Project:	AMAFCA CMC									
Sample ID: MB	Sar	npType: M	BLK	Tes	tCode: SN	1 4500 NH3	B: Ammonia			
Client ID: PBW	В	atch ID: R7	77333	RunNo: 77333						
Prep Date:	Analys	s Date: 5	/12/2021	S	SeqNo: 27	44046	Units: mg/L			
Analyte	Resu	t PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Ammonia	N	0 1.0								
Sample ID: LCS	Sar	npType: LC	cs	Tes	tCode: SN	4500 NH3	B: Ammonia			
Client ID: LCSW	В	atch ID: R7	77333	F	RunNo: 77	333				
Prep Date:	Analys	s Date: 5	/12/2021	S	SeqNo: 27	44047	Units: mg/L			
Analyte	Resu	t PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Ammonia	9.8	3 1.0	10.00	0	98.0	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 19

Result

0.25

PQL

0.010

Qual

Qual

Client: AMAFCA **Project:** CMC Sample ID: MB-59857 SampType: MBLK TestCode: EPA Method 365.1: Total Phosphorous Client ID: PBW Batch ID: 59857 RunNo: 77273 Prep Date: 5/6/2021 Analysis Date: 5/7/2021 SeqNo: 2740716 Units: mg/L Analvte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Result Phosphorus, Total (As P) ND 0.010 Sample ID: LCS-59857 SampType: LCS TestCode: EPA Method 365.1: Total Phosphorous Client ID: LCSW Batch ID: 59857 RunNo: 77273 SeqNo: 2740717 Prep Date: 5/6/2021 Analysis Date: 5/7/2021 Units: mg/L

0.2500

SPK value SPK Ref Val %REC LowLimit

0

102

HighLimit

110

90

%RPD

RPDLimit

Analyte Phosphorus, Total (As P)

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Client:AMAFCAProject:CMC

Sample ID: MB-59817	SampTy	vpe: MB	BLK	Tes	tCode: SI	M2540C MC	D: Total Diss	olved So	lids	
Client ID: PBW	Batch ID: 59817			RunNo: 77202						
Prep Date: 5/5/2021	Analysis Da	ate: 5/0	6/2021	S	SeqNo: 27	737645	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Dissolved Solids		00.0								
	ND	20.0								
Sample ID: LCS-59817	SampTy		s	Tes	tCode: SN	M2540C MC	D: Total Diss	olved So	lids	
	SampTy				tCode: SN RunNo: 77		D: Total Diss	olved So	lids	
Sample ID: LCS-59817	SampTy	/pe: LC	317	F		7202	D D: Total Diss Units: mg/L	olved So	lids	
Sample ID: LCS-59817 Client ID: LCSW	SampTy Batch	/pe: LC	317 6/2021	F	RunNo: 77 SeqNo: 27	7202		olved So	lids RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

- Page 17 of 19

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

AMAFCA

Project:	CMC										
Sample ID: MB-59	967	SampT	ype: ME	BLK	Tes	tCode: SI	M 4500 Nor	g C: TKN			
Client ID: PBW		Batch	ID: 59	967	F	RunNo: 7	7358				
Prep Date: 5/12/	2021	Analysis D	ate: 5/	13/2021	5	SeqNo: 2	745155	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Kjeldahl, Tota	I	ND	1.0								
Sample ID: LCS-5	9967	SampT	ype: LC	S	Tes	tCode: SI	M 4500 Nor	g C: TKN			
Client ID: LCSW	1	Batch	ID: 59	967	F	RunNo: 7	7358				
Prep Date: 5/12/	2021	Analysis D	ate: 5/	13/2021	5	SeqNo: 2	745156	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Kjeldahl, Tota	I	9.9	1.0	10.00	0	99.4	80	120			

Qualifiers:

Client:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

AMAFCA

Project: CMC	2					
Sample ID: MB-59803	SampType: MBLK	TestCode: SM 2540D: T	SS			
Client ID: PBW	Batch ID: 59803	RunNo: 77153				
Prep Date: 5/4/2021	Analysis Date: 5/5/2021	SeqNo: 2735841	Units: mg/L			
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Suspended Solids	ND 4.0					
Sample ID: LCS-59803	TestCode: SM 2540D: T	SS				
Client ID: LCSW	Batch ID: 59803	RunNo: 77153				
Prep Date: 5/4/2021	Analysis Date: 5/5/2021	SeqNo: 2735842	Units: mg/L			
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Suspended Solids	89 4.0 92.10	0 96.6 83.71	119.44			

Qualifiers:

Client:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 19

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107
LABORATORY	Website: clients.hallenvironmental.com
Client Name: AMAFCA	Work Order Number: 2104C54

Sample Log-In Check List

Client Name:	AMAFCA	Work Order Nun	ber: 2104C54		RcptNo: 1	
Received By:	Juan Rojas	4/29/2021 9:48:00	АМ	fuan Eng		
	Desiree Dominguez	4/29/2021 11:29:0		funnang		
Poviewod Pv	R u/2a/21			113		
Chain of Custo	ody					
1. Is Chain of Cus	tody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the sa	ample delivered?		Client			
Log In						
Was an attempt	t made to cool the sample	s?	Yes 🖌	No 🗌	NA 🗌	
4. Were all sample	es received at a temperatu	rre of >0° C to 6.0°C	Yes 🗸	No 🗌	NA 🗌	
5. Sample(s) in pro	oper container(s)?		Yes 🔽	No 🗌		
6. Sufficient sample	e volume for indicated tes	t(s)?	Yes 🗹	No 🗌		
7. Are samples (ex	cept VOA and ONG) prop	erly preserved?	Yes 🗹	No 🗌		
8. Was preservativ	e added to bottles?		Yes 🗌	No 🗹	NA 🗌	
9. Received at leas	st 1 vial with headspace <	1/4" for AQ VOA?	Yes	No 🗌	NA 🗹	
0. Were any samp	le containers received bro	ken?	Yes	No 🗹	# of preserved bottles checked	
	match bottle labels? cies on chain of custody)		Yes 🗹	No 🗌	for pH: (2)	nless note
2. Are matrices cor	rectly identified on Chain	of Custody?	Yes 🗹	No 🗌	Adjusted? NO	
3. Is it clear what a	nalyses were requested?		Yes 🗹	No 🗌		
	times able to be met? tomer for authorization.)		Yes 🗹	No 🗌	Checked by: Cen	-4/0
pecial Handlin	<u>g (if applicable)</u>					
15. Was client notifi	ied of all discrepancies wi	th this order?	Yes	No 🗌	NA 🗹	
Person No	otified:	Date	: 1 ²²	and some and the state of the s		
By Whom	· .	Via:	eMail 🗌 F	Phone 🗌 Fax	In Person	
Regarding	j:					
Client Inst	ructions:	n ander konnen navningen konnen Samtan nesen av ner Laarste de ste			an even e transiona avezantinas constitues na transfer	

17. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	3.7	Good				
2	3.0	Good				

C	Chain	-of-Ci	ustody Record	Turn-Around	I Time:	en contra agains	1															
Client:		AFCA		- M Standard	d □ Rusł	1																
				Project Nam			ANALYSIS LABORATO					JR	. T									
Mailing	Address			CMC			www.hallenvironmental.com															
waning	Address	5.		Ciril	_			49	01 H	awki	ins N	VE -	Alb	ouqu	erqu	ie. N	IM 87	7109				
				Project #:	ν.)5-34							-410					
Phone												Α	naly	/sis	Req	ues	t					
email c	or Fax#:	pchau	HEZ @ AMAFCA. OFQ	Project Mana	ager:		1)	Ô					SO4			l)					Τ	
	Package:		J	Patri	ck Cha	10-7	(8021)	/ MRO)	N.S		1S				1	ose	to	\sim				
🖾 Star	ndard	ak I	Level 4 (Full Validation)	ratio	cr Cha	NE Z	S	10	PCB's		VISC		PO4,			nt/At	she	ナイ				
Accred			ompliance	Sampler: 🤇 -	Johannes	ON - DBSA	TMB'	/ DRO	8081 Pesticides/8082	,	PAHs by 8310 or 8270SIMS		NO_2 ,			Total Coliform (Present/Absent)	attached sheet	enumerated				
		□ Othe	r	and the set of the second s	- H Yes	🗆 No	-	8	s/8	504	ъ	s		stering.	(AC	(Pr	fc -	NO				
) (Type)			# of Coolers:			MTBE	(G	cide	po	310	etal	Ŷ	(>-	Е	F	6	<u> </u>			
				Cooler Temp	(including CF):	3.8-0.1=3.7(°C)	Ξ	15D	estic	eth	X 8.	Ň	Br, NO ₃ ,	OA	em	olifo	9	1	12 12			
						3.1-0.1=3.0	X	80	щ	Σ	s b	A 8	н Ц	S	(S	ŭ	See	10				
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL NO. 2104054	BTEX	TPH:8015D(GRO	3081	EDB (Method 504.1)	AH	RCRA 8 Metals	CI, F	8260 (VOA)	8270 (Semi-VOA)	ota	S	Ecoli				
4.28.21		AQ	RGNorth-20210428	numerus	. , , , , , , , , , , , , , , , , , , ,	-001/002				-	-	-		<u></u>			V			+	+	\neg
	0830	AQ	R61s1eta-20210429	numerous		003/004 07 DAD 4/29/21											X		\rightarrow	+	+	-
4-29-21	0645	A-Q	RGAlameda-20210429	1		-005										1.0	1	X		-	+	-
1-	~	AR	Trip blank	3		-006											Х				+	-
																1					T	1
																					+	
																		-				
						~									1.4							
													11									
		1												/					80 - 18 2011 - 18		Τ	
	E. F.																	/				
															_					-	\downarrow	
Date:	Time:	Relinquish	ed by:	Received by:	Via:	Date Time	Rem	narks	s:													1
4-29-21	0945	Cho	the		Finan	120/21 01/11	R	GNO	orth	1-2	021	042	-8	eco	oli	del	N-en	rd i	\sim	4/28	2	
Date:	Time:	Relinquish	ed by:	Received by:	Via:	129/21 9.'48 Date Time	A	HAO	the d	Co	lla	boro	nita	e n	Non-	larin	90	oup	sh	eet	•	
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			D	R	- 6-	al.	STA	h.	F	2.9.0	m	oth	od	161	68			
							P.C	108	~~~~	roug	CIL	DY	2				100		-0			

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Collaborative Monitoring Cooperative - Analyses List Attach to Chain of Custody

Please refer to attached NPDES Permit No. NMR04A00 Appendix F. Methods and minimum quantification levels (MQL's) will be those approved under 40 CFR 136 and specified in the attached permit

Analyte (Bold Indicates WQS)	CAS#	Fraction	Method #	MDL ()
Hardness (Ca + Mg)	NA	Total	200.7	2.4
Lead	7439-92-1	Dissolved	200.8	0.09
Copper	7440-50-8	Dissolved	200.8	1.06
Ammonia + organic nitrogen	7664-41-7	Total	350.1	31.32
Total Kjehldal Nitrogen	17778-88-0	Total	351.2	58.78
Nitrate + Nitrite	14797-55-8	Total	353.2	10.17
Polychlorinated biphenyls (PCBs)	1336-36-3	Total	1668	0.014
Tetrahydrofuran (THF)	109-99-9	Total	8260C	
bis(2-Ethylhexyl)phthalate	117-81-7	Total	8270D	7.9
Dibenzofuran	132-64-9	Total	8270D	0.2
Indeno(1,2,3-cd)pyrene	193-39-5	Total	8270D	0.2
Benzo(b)fluoranthene	205-99-2	Total	8270D	0.2
Benzo(k)fluoranthene	207-08-9	Total	8270D	0.1
Chrysene	218-01-9	Total	8270D	0.1
Benzo(a)pyrene	50-32-8	Total	8270D	0.2
Dibenzo(a,h)anthracene	53-70-3	Total	8270D	0.3
Benzo(a)anthracene	56-55-3	Total	8270D	0.3
Dieldrin	60-57-1	Total		0.2
Pentachlorophenol	87-86-5	Total	8081	0.1
enzidine	92-87-5	Total	8270D	0.2
hemical Oxygen Demand	E1641638 ²		8270D	0.1
ross alpha (adjusted)	NA	Total	НАСН	5100
otal Dissolved Solids	E1642222 ²	Total	Method 900	0.1 pCi/L
otal Suspended Solids	NA	Total	SM 2540C	60.4
ological Oxygen Demand		Total	SM 2540D	3450
il and Grease	N/A	Total	Standard Methods	930
coli-enumeration		Total	1664A	5000
			SM 9223B	
losphorus			SM 4500	
losphorus		Dissolved	365.1	100
Iromium IV		Total	365.1	100
		Total	3500Cr C-2011	100

Site Identification:	RGNorth			
Notes: Clud	y, light rain	pH sond	e requiral	multiple calibration
Full Suite Sampl	e Date and Time:	4/28/21	1230	
Full Sample Ider	ntification: RGN	iorth- 2021	0428	
QC Samples:	Duplicate / None	QC Sample ID:		
QC samples requ QC Sample time:	ire a DIFFERENT sar	mple time than the	environmental s	sample.

Full Suite Collection Point	: MR6CD	DAM			
Full Suite Sample Volume:	~ 8 gal	Collection Time Start:	1140	End:	1225

Field Parameters for each 2-gallon grab

Grab	Time	Temp (°C)	рН	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)
1	1140	11.79	7.10	315	8.85	81.5
2	1122	11.06	7.34	312	8.04	73.0
3	1210	N09	7.59	312	9.17	83.6
4	1225	11.37	8.16	312	8.46	77.3
Composite	1230	11.59	7.61	476	8.81	80.9

Turbid Water Scolor light by N Solids Oil/Sheen Stoam Odor____

Analytical -see 2020 COC table

Samplers ______ Shennen

Notes: Clear, Sunny pH sonde re	equired multiple calibrations (check
Full Suite Sample Date and Time: $4/29/21$	083Ô
Full Sample Identification: 1316fa - RG 181	leta-20210429
QC Samples: Duplicate (None) QC Sample ID:	
QC samples require a DIFFERENT sample time than the e QC Sample time:	environmental sample.

Full Suite Collection Point :	Isleta	dam			
Full Suite Sample Volume:	\$ 6 gel	Collection Time Start:	0745	End:	0830

Field Parameters for each 2-gallon grab

Time	Temp (°C)	pН	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)
0745	10.34	7.62	417	8.38	74.7
0800	10.66	7.63	396	8.54	76.7
0 815	11.02	7.74	397	8.73	79.2
0830	10.85	7.65	394	8.70	785
0830	10.96	7.69	396	8.73	78.8
	0 745 0 800 0 815 0 830	Time (°C) 0745 10.34 0800 10.66 0815 11.02 0830 10.85 0830 10.96	Time(°С)рн074510.347.62080010.667.63081511.027.74083010.857.65083010.96769	TimeTemp (°С)PHConductance (µS/ст)074510.347.62417080010.667.63396081511.027.74397083010.857.65394083010.967.69396	TimeTemp (°C)рнConductance (µS/cm)Oxygen (mg/L)074510.347.624178.38080010.667.633968.54081511.027.743978.73083010.857.653948.70

□Turbid Water □Color_<u>1+_bran</u> ↓ Solids □Oil/Sheen □Foam □Odor_

Analytical -see 2020 COC table

Site Identification:	RG	Alamed	a
----------------------	----	--------	---

Notes:

Full Suite Sam	ple Date and Time:	4/28/21	1340		
Full Sample Ide	entification: RC	b Mameda.	-20210428	3	
QC Samples:	Duplicate / None	QC Sampl	le ID:		
QC samples red QC Sample time	quire a DIFFERENT s e:	ample time tha	n the environme	ntal sample.	

Full Suite Collection Point	:	Bridge				
Full Suite Sample Volume:	1/2	gal	Collection Time Start:	1340	End:	1340

Field Parameters for each 2-gallon grab

Grab	Time	Temp (°C)	рН	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)
1	1340	12.47	6.1Z	333	10.57	95.2
2						
3						
4						
Composite						
□ □Turbid Wa	ater 🕱 Colo	r BOWN	XSolid	s 🗇 Oil/Sheen	□Foam □Odor	

Analytical -see 2020 COC table

Site Identification:	RG-Alameda
----------------------	------------

Notes:

Full Suite Sam	ple Date and Time:	4/29/21	0645		
Full Sample Ide	entification: RG-	A la meda.	20210420	9	
QC Samples:	Duplicate / None	QC Sample II	D:		
QC samples require a DIFFERENT sample time than the environmental sample. QC Sample time:					

Full Suite Collection Point :	Bridge	e			
Full Suite Sample Volume:	1/2gal	Collection Time Start: 0645	End:	<u> 264 8</u>	

Field Parameters for each 2-gallon grab

Grab	Time	Temp (°C)	рН	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)
1	0645	10.33	7.31	3 YZ	8.76	78.2
2						
3						
4						
Composite						
Turbid Wa	ater 🛛 Colo	Form	□Solid	s 🛛 Oil/Sheen 🤇	ØFoam ⊡Odor_	

Analytical -see 2020 COC table

Chain-of-Custody Record	Turn-Around Time:	
Client: AMAFCA	X Standard D Rush	HALL ENVIRONMENTAL
	Project Name:	
Mailing Address:	- CMC	www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109
	Project #:	Tel. 505-345-3975 Fax 505-345-4107
Phone #:		Analysis Request
gmail or Fax#: DChavez @ AMARCA Dig	Project Manager:	21) 21) 80, 80,
QA/QC Package: Standard Level 4 (Full Validation)	Patrick Chavez	
Accreditation: Accreditation: Accreditation: Accompliance	Sampler: C. Johannesen - DBSA	7MB's 3082 F 3082 F 4.1) 1) 1) 102/ H 102/ H 102/ H 102/ H
□ NELAC □ Other	On Ice: D Yes: D No	BE / TMB's (GRO / DRO / IGRO / DRO / IGRO / DRO / IGRO / DRO / IGRO / DO / IGRO / I
□ EDD (Type)	# of Coolers:	MTBE / ISD(GRC sticides/ sticides/ hethod 50 Metals OA) A Metals CA) - A A A - P MA
	Cooler Tempineuding cr): (*C)	
	Container Preservative HEAL No.	BTEX / MTBE / TMB TPH:8015D(GRO / DR 8081 Pesticides/8082 B081 Pesticides/8082 EDB (Method 504.1) PAHs by 8310 or 827(RCRA 8 Metals CI, F, Br, NO ₃ , NO ₂ , 8260 (VOA) 8270 (Semi-VOA) Total Coliform (Preser See a MAChri C(-1, - Province
Date Time Matrix Sample Name	Type and # Type	
42821 1230 AQ RGNorth-20210428	numerius	
4.29.21 0830 A& RGISteta 20210429	AVMENTOUS	
4-29-21 0645 AU REAlanda 20210429		
- A& Trip blank	3	
Date: Time: Relinquished by: 1291 0445 Chart	Received by: Via: Date Time	Remarks: R6North-20210428 each delivered on 4/28/21
Date: Time: Relinquished by:	Received by: Via: Date Time	Attached Collaborative Mantured Coup sheet
		PCBs analysis by EPA method 1668

3,40,

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

			ustody Record	Turn-Around	Time:			🗖	•		F	44		FI	NV	TE	20	NR	ИF	TN	ГАІ	1
Client:	Am	AFCA	·	Ⅰ ⊠ Standard	🗆 Rush	l														ATC		
			······································	Project Name			<u> </u>	1 🖿														
Mailing	Address	S :		CMC	Stat H	#W3\$7",".	•,		49	01 H						ment erqu			7109			
<u> </u>				Project #:	· · · · · · · · · · · · · · · · ·)5-34				-	505-						
Dhara	ш.								16	J. 50	JO-04	+0-0				S05- Req			1			
Phone	#:	odra	er O h what for the sec	Project Mana		·																
QA/QC	Package:	Pirou	□ Level 4 (Full Validation)		- Chave-	Z_		TMB's (8021)	RO / MRO	PCB's		8270SIMS		, PO4, SO4			nt/Absen	too they	t.N			
Accred	itation:	🗆 Az Co	ompliance	Sampler: ()	ohanneson	- BBSA	14 M	IME	۲ D	:082	i.1)	827		NO ₂ ,			ese.		enumerat			
		□ Othe	r	On Ice:	🗆 Yes	□ No		1	RO	es/8	504	- Z	s			OA)	l (Pr		50			
) (Type)			# of Coolers:			<u>/%C\</u>	TBE	D(G	icid	poq	331(leta	ž	∂	ni-V	orm	4	- 64			
Date	Time	Matrix	Sample Name		(including CF): Preservative Type	HEA	(°C) L No.	BTEX / MTBE	TPH:8015D(GRO / DRO / MRO)	8081 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310 or	RCRA 8 Metals	CI, F, Br, NO ₃ ,	8260 (VOA)	8270 (Semi-VOA)	Total Coliform (Present/Absent)	See Added to the	ECON			
	1230	1	RGNorth-20210428	1 ypc and #						<u> </u>		-	-	-	<u> </u>				X			
120 -	1340	AQ	RGAlameda 20210428	1															V	┢╼╼╋	-+	
	0421	A Q	ING MIAMPAA - LOLIO4L8									-								<u> </u>		
																				\vdash		
														-						┝──┤		
										ļ												
			·				a - 1				ļ											
,														1				i				
	1																					
	1																					
													•.							\square		
	+																					
Date:	Time:	Relinguis		Received by:	U. Via:	Date	Time	Rer	nark	1 .s:	L	J.	1	1	<u> </u>	L	I	1			A	
Date:	Time:	Relinquis	hed by:	Received by:	Via:	Date	Time															

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

ATTACHMENT 2

FY 2021 DRY SEASON COMPLETED DATA VERIFICATION AND VALIDATION (V&V) FORMS

Attachment 1.1 Water Quality Sample Data Verification and Validation Worksheet

Study Name: <u>Compliance Monitoring Cooperative (CMC)</u> Year: <u>FY 2021 (April 2021 – Dry Season Sample)</u> Project Coordinator: <u>For Data Review and Reporting – SJG, BHI</u> V&V Reviewer: <u>SJG</u> Data covered by this worksheet: <u>Rio Grande North – 04/28/2021</u> Version of Verification/Validation Procedures: <u>QAPP – CMC SOP #2 (2/2015); AMAFCA SOP #5 (2/2019)</u>

Step 1: Verify Field Data

A. Are all Field Data forms present and complete? Xes No

If yes, proceed; if no, attempt to locate missing forms, then indicate any remaining missing forms and action taken.

Missing Field Data Forms	Action Taken

Total number of occurrences: 0

B. Are station name and ID, and sampling date and time on forms consistent with database? Xes I ves If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station and Parameter	Action Taken	Re-verified?

Total number of occurrences: 0

C. Are field data on forms consistent with database? \square Yes \square No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station	Sampling Date	Parameter(s) Corrected	Re-verified?

Total number of occurrences: 0

D. Are RIDs correct and associated with the correct analytical suite, media subdivision (e.g. surface water, municipal waste, etc.) and activity type (e.g. Field observation, Routine sample, QA sample etc.)?

Yes No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify

.....

Station/RID	Sampling Date	RID Corrected	Re-verified?

Total number of occurrences: 0

Step 1 Completed Initials: SJG Date: 8/16/2021

Step 2: Verify Data Deliverables

A. Have all data in question been delivered? Xes No

If yes, proceed; if no, indicate RIDs with missing data (samples or blanks) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken. Complete this step upon receipt of all missing data.

RID	Submittal Date	Missing Data/Parameters	Date of Initial Verification	Date Missing Data Were Received

Total number of occurrences: 0

B. Do all of the analytical suites have the correct number and type of analytes. 🛛 Yes 🗌 No

If yes, proceed; if no, indicate RIDs with missing or incorrect analyte(s) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken.

*Note – Lab report identifies "Dissolved Phosphorous" as "Total Phosphorous" on a filtered sample (identified under "Client Sample ID" as (Dissolved)).

RID	Submittal Date	Missing or Incorrect Parameters	Action Taken	Re-verified?
Rio Grande North	<u>4/28/2021</u>	Lab report lists Dissolved Phosphorous results as "Total Phosphorous" for "filtered sample".	Notified AMAFCA of this and verified with HEAL. BHI added note to the lab report.	Yes

*Note – HEAL Lab report order number 2104C54.

Step 2 Completed Initials: SJG Date: 8/16/2021

Step 3: Verify Flow Data

*Note – Not Applicable – no flow data provided with CMC sample collection

A._Identify incorrect or missing data on the flow calculation spreadsheet and correct errors.

Station	Sampling Date	Flow data missing or incorrect?

.

Total number of occurrences: 0

B. Identify incorrect or missing discharge measurements, correct errors in database and re-verify.

Station	Sampling Date	Flow data missing or incorrect?	Re-verified?

Total number of occurrences: 0

<u>Not Applicable</u> ☐ Step 3 Completed Initials: <u>SJG</u> Date: <u>8/16/2021</u>

.....

Step 4: Verify Analytical Results for Missing Information or Questionable Results

Were any results with missing/questionable information identified? Xes No

If no, proceed; if yes, indicate results with missing information or questionable results or attach report. Contact data source and indicate action taken. Complete this step upon receipt of missing information or clarification of questionable results (clarify questionable results only, DO NOT change results without written approval (from lab or QA officer) and associated documentation).

RID	Sample Date	Missing or Questionable Information/Results	Action Taken
<u>Rio Grande</u> <u>North</u>	04/28/2021	Lab report provides Dissolved Phosphorous results as "Total Phosphorous" for "filtered sample".	BHI added note to the lab report.
<u>Rio Grande</u> <u>North</u>	<u>04/28/2021</u>	Lab report provides Gross Alpha result but did not report Adjusted Gross Alpha.	AMAFCA spoke with Lab. Results well below WQS. BHI added note to the lab report.

*Note – HEAL Lab report order number 2104C54.

Total number of occurrences: 2

Step 4 Completed Initials: SJG Date: 8/16/2021

Step 5: Validate Blanks Results

Were any analytes of concern detected in blank samples?
Yes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager, with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes have been added to database correctly.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validatio n Code/Fla g Applied	Code/Flag verified in database?

*See validation procedures to determine which associated data need to be flagged and include on Validation Codes Form.

Total number of occurrences: 0

Step 5 Completed Initials: SJG Date: 8/16/2021

Step 6: Validate Holding Times Violations

Were any samples submitted that did not meet specified holding times?
Yes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validation Code/Flag Applied	Code/Flag verified in database to ALL associated data?*

*See validation procedures to determine which associated data need to be flagged.

*Note – Lab reports lists pH with hold time flag. Database uses field data reported pH, so this is hold time is not applicable.

Total number of occurrences: 0

Step 6 Completed Initials: SJG Date: 8/16/2021

Step 7: Validate Replicate/Duplicate Results (if applicable)

Were any replicate/duplicate pairs submitted outside of the established control limit of 20%?

🗌 Yes 🛛 No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID Pairs	Replicate or Duplicate?	Sample Date	Parameter	RPD	Validation Code/Flag Applied	Code/Flag verified in database applied?*

*See validation procedures to determine which associated data need to be flagged.

Total number of occurrences: 0

Step 7 Completed Initials: SJG Date: 8/16/2021

After all of the above steps have been completed, save and print the worksheet, attach all applicable supplemental information and sign below.

I acknowledge that the data verification and validation process has been completed for the data identified above in accordance with the procedures described in the CMC QAPP, SOP #2

Sauch County

Data Verifier/Validator Signature

8/16/2021

Date

COMPLETION OF DATA VERIFICATION AND VALIDATION PROCESS

Once the data verification and validation process has been completed for the <u>entire study</u> (note: if the worksheet is for a subset of the data from a study, be sure ALL the data for the entire study is included before final completion of the data verification and validation process), notify the NMSQUID administrator that the process is complete and request that "V V in STORET" be added to the project title.

Once all data have been verified and validated for a study provide <u>copies</u> of ALL *Data Verification and Validation Worksheets* and attachments associated with the study to the Quality Assurance Officer and retain <u>originals</u> in the project binder.

Attachment 1.2 SWQB Validation Codes

When deficiencies are identified through the data verification and validation process, AMAFCA documents or "flags" the deficiencies by assigning validation codes. All data collected from the last compliant QC sample and up to the next compliant QC sample are assigned validation codes. The validation code alerts the data user that the results are outside QA control limits and may require re-sampling or a separate, qualitative analysis based on professional judgment.

Validation Code	Definition	WQX Equivalent
A1	Sample not collected according to SOP	•
B1	Chemical was detected in the field blank at a concentration less than 5% of the sample concentration.	
BN	Blanks NOT collected during sampling run	
BU	Detection in blank. Analyte was not detected in this sample above the method's sample detection limit.	BU
RB1	Chemical was detected in the field blank at a concentration greater than or equal to 5% of the sample concentration. Results for this sample are rejected because they may be the result of contamination; the results may not be reported or used for regulatory compliance purposes.	В
R1	Rejected due to incorrect sample preservation	R
R2	Rejected due to equipment failure in the field	R
R3	Rejected based on best professional judgment	R
D1	Spike recovery not within method acceptance limits	
F1	Sample filter time exceeded	
J1	Estimated: the analyte was positively identified and the associated value is an approximate concentration of the analyte in the sample	J
K1	Holding time violation	Н
Ea	Estimated-Incubation temperature between 35.5 and 38.0° Celsius	
Er	Rejected-Incubation temperature < 34.5 or >38.0° Celsius	
PD1	Percent difference between duplicate samples excessive	
S1	Per SLD, uncertainties (sigmas) are expressed as one standard deviation, i.e. one standard error. Small negative or positive values that are less than two standard deviations should be interpreted as "less than the detection limit."	
S2	Data are suspect but deemed usable based on best professional judgment; documentation of justification is required and should be included in the Data Verification and Validation Packet and reported with results	
Z1	Macroinvertebrate data did not meet QC criteria specified in Section 2.5 of QAPP	
H1	Habitat data did not meet QC criteria specified in Section 2.5 of QAPP	

Attachment 1.1 Water Quality Sample Data Verification and Validation Worksheet

Study Name: <u>Compliance Monitoring Cooperative (CMC)</u> Year: <u>FY 2021 (April 2021 – Dry Season Sample)</u> Project Coordinator: <u>For Data Review and Reporting – SJG, BHI</u> V&V Reviewer: <u>SJG</u> Data covered by this worksheet: <u>Rio Grande South – 04/29/2021</u> Version of Verification/Validation Procedures: <u>QAPP – CMC SOP #2 (2/2015); AMAFCA SOP #5 (2/2019)</u>

Step 1: Verify Field Data

A. Are all Field Data forms present and complete? Xes No

If yes, proceed; if no, attempt to locate missing forms, then indicate any remaining missing forms and action taken.

Missing Field Data Forms	Action Taken

Total number of occurrences: 0

B. Are station name and ID, and sampling date and time on forms consistent with database? \boxtimes Yes \square No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station and Parameter	Action Taken	Re-verified?

Total number of occurrences: 0

C. Are field data on forms consistent with database? \square Yes \square No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station	Sampling Date	Parameter(s) Corrected	Re-verified?

Total number of occurrences: 0

D. Are RIDs correct and associated with the correct analytical suite, media subdivision (e.g. surface water, municipal waste, etc.) and activity type (e.g. Field observation, Routine sample, QA sample etc.)?

🛛 Yes 🗌 No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify

.....

Station/RID	Sampling Date	RID Corrected	Re-verified?

Total number of occurrences: 0

Step 1 Completed Initials: SJG Date: 8/16/2021

Step 2: Verify Data Deliverables

A. Have all data in question been delivered? Xes No

If yes, proceed; if no, indicate RIDs with missing data (samples or blanks) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken. Complete this step upon receipt of all missing data.

RID	Submittal Date	Missing Data/Parameters	Date of Initial Verification	Date Missing Data Were Received

Total number of occurrences: 0

B. Do all of the analytical suites have the correct number and type of analytes. 🛛 Yes 🗌 No

If yes, proceed; if no, indicate RIDs with missing or incorrect analyte(s) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken.

*Note – Lab report identifies "Dissolved Phosphorous" as "Total Phosphorous" on a filtered sample (identified under "Client Sample ID" as (Dissolved)).

RID	Submittal Date	Missing or Incorrect	Action Taken	Re-verified?
Rio Grande South	4/29/2021	Parameters Lab report lists Dissolved Phosphorous results as "Total Phosphorous" for "filtered sample".	Notified AMAFCA of this and verified with HEAL. BHI added note to the lab report.	Yes

*Note – HEAL Lab report order number 2104C54.

Step 2 Completed Initials: SJG Date: 8/16/2021

Step 3: Verify Flow Data

*Note – Not Applicable – no flow data provided with CMC sample collection

A._Identify incorrect or missing data on the flow calculation spreadsheet and correct errors.

Station	Sampling Date	Flow data missing or incorrect?

.

Total number of occurrences: 0

B. Identify incorrect or missing discharge measurements, correct errors in database and re-verify.

Station	Sampling Date	Flow data missing or incorrect?	Re-verified?

Total number of occurrences: 0

<u>Not Applicable</u> ☐ Step 3 Completed Initials: <u>SJG</u> Date: <u>8/16/2021</u>

Step 4: Verify Analytical Results for Missing Information or Questionable Results

Were any results with missing/questionable information identified? Xes No

If no, proceed; if yes, indicate results with missing information or questionable results or attach report. Contact data source and indicate action taken. Complete this step upon receipt of missing information or clarification of questionable results (clarify questionable results only, DO NOT change results without written approval (from lab or QA officer) and associated documentation).

RID	Sample Date	Missing or Questionable Information/Results	Action Taken
<u>Rio Grande</u> <u>South</u>	04/29/2021	Lab report provides Dissolved Phosphorous results as "Total Phosphorous" for "filtered sample".	BHI added note to the lab report.
<u>Rio Grande</u> <u>South</u>	<u>04/29/2021</u>	Lab report provides Gross Alpha result but did not report Adjusted Gross Alpha.	AMAFCA spoke with Lab. Results well below WQS. BHI added note to the lab report.

*Note – HEAL Lab report order number 2104C54.

Total number of occurrences: 2

Step 4 Completed Initials: SJG Date: 8/16/2021

Step 5: Validate Blanks Results

Were any analytes of concern detected in blank samples?
Yes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager, with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes have been added to database correctly.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validatio n Code/Fla g Applied	Code/Flag verified in database?

*See validation procedures to determine which associated data need to be flagged and include on Validation Codes Form.

Total number of occurrences: 0

Step 5 Completed Initials: SJG Date: 8/16/2021

Step 6: Validate Holding Times Violations

Were any samples submitted that did not meet specified holding times?
Yes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validation Code/Flag Applied	Code/Flag verified in database to ALL associated data?*

*See validation procedures to determine which associated data need to be flagged.

*Note – Lab reports lists pH with hold time flag. Database uses field data reported pH, so this is hold time is not applicable.

Total number of occurrences: 0

Step 6 Completed Initials: SJG Date: 8/16/2021

Step 7: Validate Replicate/Duplicate Results (if applicable)

Were any replicate/duplicate pairs submitted outside of the established control limit of 20%?

🗌 Yes 🛛 No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID Pairs	Replicate or Duplicate?	Sample Date	Parameter	RPD	Validation Code/Flag Applied	Code/Flag verified in database applied?*

*See validation procedures to determine which associated data need to be flagged.

Total number of occurrences: 0

Step 7 Completed Initials: SJG Date: 8/16/2021

After all of the above steps have been completed, save and print the worksheet, attach all applicable supplemental information and sign below.

I acknowledge that the data verification and validation process has been completed for the data identified above in accordance with the procedures described in the CMC QAPP, SOP #2

Sauch County

Data Verifier/Validator Signature

8/16/2021

Date

COMPLETION OF DATA VERIFICATION AND VALIDATION PROCESS

Once the data verification and validation process has been completed for the <u>entire study</u> (note: if the worksheet is for a subset of the data from a study, be sure ALL the data for the entire study is included before final completion of the data verification and validation process), notify the NMSQUID administrator that the process is complete and request that "V V in STORET" be added to the project title.

Once all data have been verified and validated for a study provide <u>copies</u> of ALL *Data Verification and Validation Worksheets* and attachments associated with the study to the Quality Assurance Officer and retain <u>originals</u> in the project binder.

Attachment 1.2 SWQB Validation Codes

When deficiencies are identified through the data verification and validation process, AMAFCA documents or "flags" the deficiencies by assigning validation codes. All data collected from the last compliant QC sample and up to the next compliant QC sample are assigned validation codes. The validation code alerts the data user that the results are outside QA control limits and may require re-sampling or a separate, qualitative analysis based on professional judgment.

Validation Code	Definition	WQX Equivalent
A1	Sample not collected according to SOP	•
B1	Chemical was detected in the field blank at a concentration less than 5% of the sample concentration.	
BN	Blanks NOT collected during sampling run	
BU	Detection in blank. Analyte was not detected in this sample above the method's sample detection limit.	BU
RB1	Chemical was detected in the field blank at a concentration greater than or equal to 5% of the sample concentration. Results for this sample are rejected because they may be the result of contamination; the results may not be reported or used for regulatory compliance purposes.	В
R1	Rejected due to incorrect sample preservation	R
R2	Rejected due to equipment failure in the field	R
R3	Rejected based on best professional judgment	R
D1	Spike recovery not within method acceptance limits	
F1	Sample filter time exceeded	
J1	Estimated: the analyte was positively identified and the associated value is an approximate concentration of the analyte in the sample	J
K1	Holding time violation	Н
Ea	Estimated-Incubation temperature between 35.5 and 38.0° Celsius	
Er	Rejected-Incubation temperature < 34.5 or >38.0° Celsius	
PD1	Percent difference between duplicate samples excessive	
S1	Per SLD, uncertainties (sigmas) are expressed as one standard deviation, i.e. one standard error. Small negative or positive values that are less than two standard deviations should be interpreted as "less than the detection limit."	
S2	Data are suspect but deemed usable based on best professional judgment; documentation of justification is required and should be included in the Data Verification and Validation Packet and reported with results	
Z1	Macroinvertebrate data did not meet QC criteria specified in Section 2.5 of QAPP	
H1	Habitat data did not meet QC criteria specified in Section 2.5 of QAPP	

Attachment 1.1 Water Quality Sample Data Verification and Validation Worksheet

Study Name: <u>Compliance Monitoring Cooperative (CMC)</u> Year: <u>FY 2021 (April 2021 – Dry Season Sample)</u> Project Coordinator: <u>For Data Review and Reporting – SJG, BHI</u> V&V Reviewer: <u>SJG</u> Data covered by this worksheet: <u>Rio Grande at Alameda (E. coli only samples) – 04/28/2021 & 04/29/2021</u> Version of Verification/Validation Procedures: <u>QAPP – CMC SOP #2 (2/2015); AMAFCA SOP #5 (2/2019)</u>

Step 1: Verify Field Data

A. Are all Field Data forms present and complete? Xes No

If yes, proceed; if no, attempt to locate missing forms, then indicate any remaining missing forms and action taken.

Missing Field Data Forms	Action Taken	

Total number of occurrences: 0

B. Are station name and ID, and sampling date and time on forms consistent with database? \boxtimes Yes \square No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station and Parameter	Action Taken	Re-verified?			

Total number of occurrences: 0

C. Are field data on forms consistent with database? \square Yes \square No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station	Sampling Date	Parameter(s) Corrected	Re-verified?

Total number of occurrences: 0

D. Are RIDs correct and associated with the correct analytical suite, media subdivision (e.g. surface water, municipal waste, etc.) and activity type (e.g. Field observation, Routine sample, QA sample etc.)?

🛛 Yes 🗌 No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify

Station/RID	Sampling Date	RID Corrected	Re-verified?

.....

Total number of occurrences: 0

Step 1 Completed Initials: SJG Date: 8/16/2021

Step 2: Verify Data Deliverables

A. Have all data in question been delivered? Xes No

If yes, proceed; if no, indicate RIDs with missing data (samples or blanks) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken. Complete this step upon receipt of all missing data.

RID	Submittal Date	Missing Data/Parameters	Date of Initial Verification	Date Missing Data Were Received

Total number of occurrences: 0

B. Do all of the analytical suites have the correct number and type of analytes. 🛛 Yes 🗌 No

If yes, proceed; if no, indicate RIDs with missing or incorrect analyte(s) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken.

RID	Submittal Date	Missing or Incorrect Parameters	Action Taken	Re-verified?

Step 2 Completed Initials: SJG Date: 8/16/2021

Step 3: Verify Flow Data

*Note – Not Applicable – no flow data provided with CMC sample collection

A._Identify incorrect or missing data on the flow calculation spreadsheet and correct errors.

Station	Sampling Date	Flow data missing or incorrect?

Total number of occurrences: 0

B. Identify incorrect or missing discharge measurements, correct errors in database and re-verify.

Station	Sampling Date	Flow data missing or incorrect?	Re-verified?

Total number of occurrences: 0

Not Applicable Step 3 Completed Initials: SJG Date: 8/16/2021

Step 4: Verify Analytical Results for Missing Information or Questionable Results

Were any results with missing/questionable information identified?
Yes No

If no, proceed; if yes, indicate results with missing information or questionable results or attach report. Contact data source and indicate action taken. Complete this step upon receipt of missing information or clarification of questionable results (clarify questionable results only, DO NOT change results without written approval (from lab or QA officer) and associated documentation).

RID	Sample Date	Missing or Questionable Information/Results	Action Taken

Total number of occurrences: 0

Step 5: Validate Blanks Results

Were any analytes of concern detected in blank samples?
Yes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager, with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes have been added to database correctly.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validatio n Code/Fla g Applied	Code/Flag verified in database? *

*See validation procedures to determine which associated data need to be flagged and include on Validation Codes Form.

Total number of occurrences: 0

Step 5 Completed Initials: SJG Date: 8/16/2021

Step 6: Validate Holding Times Violations

Were any samples submitted that did not meet specified holding times?
Yes Xo

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validation Code/Flag Applied	Code/Flag verified in database to ALL associated data?*

*See validation procedures to determine which associated data need to be flagged.

Total number of occurrences: 0

Step 6 Completed Initials: SJG Date: 8/16/2021

.....

Step 7: Validate Replicate/Duplicate Results (if applicable)

Were any replicate/duplicate pairs submitted outside of the established control limit of 20%?

🗌 Yes 🛛 No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID Pairs	Replicate or Duplicate?	Sample Date	Parameter	RPD	Validation Code/Flag Applied	Code/Flag verified in database applied?*

*See validation procedures to determine which associated data need to be flagged.

Total number of occurrences: 0

Step 7 Completed Initials: SJG Date: 8/16/2021

After all of the above steps have been completed, save and print the worksheet, attach all applicable supplemental information and sign below.

I acknowledge that the data verification and validation process has been completed for the data identified above in accordance with the procedures described in the CMC QAPP, SOP #2

Darch County

Data Verifier/Validator Signature

<u>8/16/2021</u>

Date

COMPLETION OF DATA VERIFICATION AND VALIDATION PROCESS

Once the data verification and validation process has been completed for the <u>entire study</u> (note: if the worksheet is for a subset of the data from a study, be sure ALL the data for the entire study is included before final completion of the data verification and validation process), notify the NMSQUID administrator that the process is complete and request that "V V in STORET" be added to the project title.

Once all data have been verified and validated for a study provide <u>copies</u> of ALL *Data Verification and Validation Worksheets* and attachments associated with the study to the Quality Assurance Officer and retain <u>originals</u> in the project binder.

Attachment 1.2 SWQB Validation Codes

When deficiencies are identified through the data verification and validation process, AMAFCA documents or "flags" the deficiencies by assigning validation codes. All data collected from the last compliant QC sample and up to the next compliant QC sample are assigned validation codes. The validation code alerts the data user that the results are outside QA control limits and may require re-sampling or a separate, qualitative analysis based on professional judgment.

Validation Code	Definition	WQX Equivalent
A1	Sample not collected according to SOP	
B1	Chemical was detected in the field blank at a concentration less than 5% of the sample concentration.	
BN	Blanks NOT collected during sampling run	
BU	Detection in blank. Analyte was not detected in this sample above the method's sample detection limit.	BU
RB1	Chemical was detected in the field blank at a concentration greater than or equal to 5% of the sample concentration. Results for this sample are rejected because they may be the result of contamination; the results may not be reported or used for regulatory compliance purposes.	В
R1	Rejected due to incorrect sample preservation	R
R2	Rejected due to equipment failure in the field	R
R3	Rejected based on best professional judgment	R
D1	Spike recovery not within method acceptance limits	
F1	Sample filter time exceeded	
J1	Estimated: the analyte was positively identified and the associated value is an approximate concentration of the analyte in the sample	J
K1	Holding time violation	Н
Ea	Estimated-Incubation temperature between 35.5 and 38.0° Celsius	
Er	Rejected-Incubation temperature < 34.5 or >38.0° Celsius	
PD1	Percent difference between duplicate samples excessive	
S1	Per SLD, uncertainties (sigmas) are expressed as one standard deviation, i.e. one standard error. Small negative or positive values that are less than two standard deviations should be interpreted as "less than the detection limit."	
S2	Data are suspect but deemed usable based on best professional judgment; documentation of justification is required and should be included in the Data Verification and Validation Packet and reported with results	
Z1	Macroinvertebrate data did not meet QC criteria specified in Section 2.5 of QAPP	
H1	Habitat data did not meet QC criteria specified in Section 2.5 of QAPP	

Bohannan 🛦 Huston

Engineering Spatial Data Advanced Technologies

> Courtyard I 7500 Jefferson St. NE Albuquerque, NM 87109-4335

MEMORANDUM

www.bhinc.com voice: 505.823.1000 facsimile: 505.798.7988 toll free: 800.877.5332

DATE: April 22, 2021

- TO: Jerry Lovato, PE, AMAFCA Patrick Chavez, PE, AMAFCA
- FROM: Craig Hoover, PE Sarah Ganley, PE
- SUBJECT: CMC Wet Season, Wet Weather Stormwater Monitoring Data Verification, Analysis Results Database, and Reporting Memo FY 2021 Wet Season (July 1, 2020 to October 31, 2020)

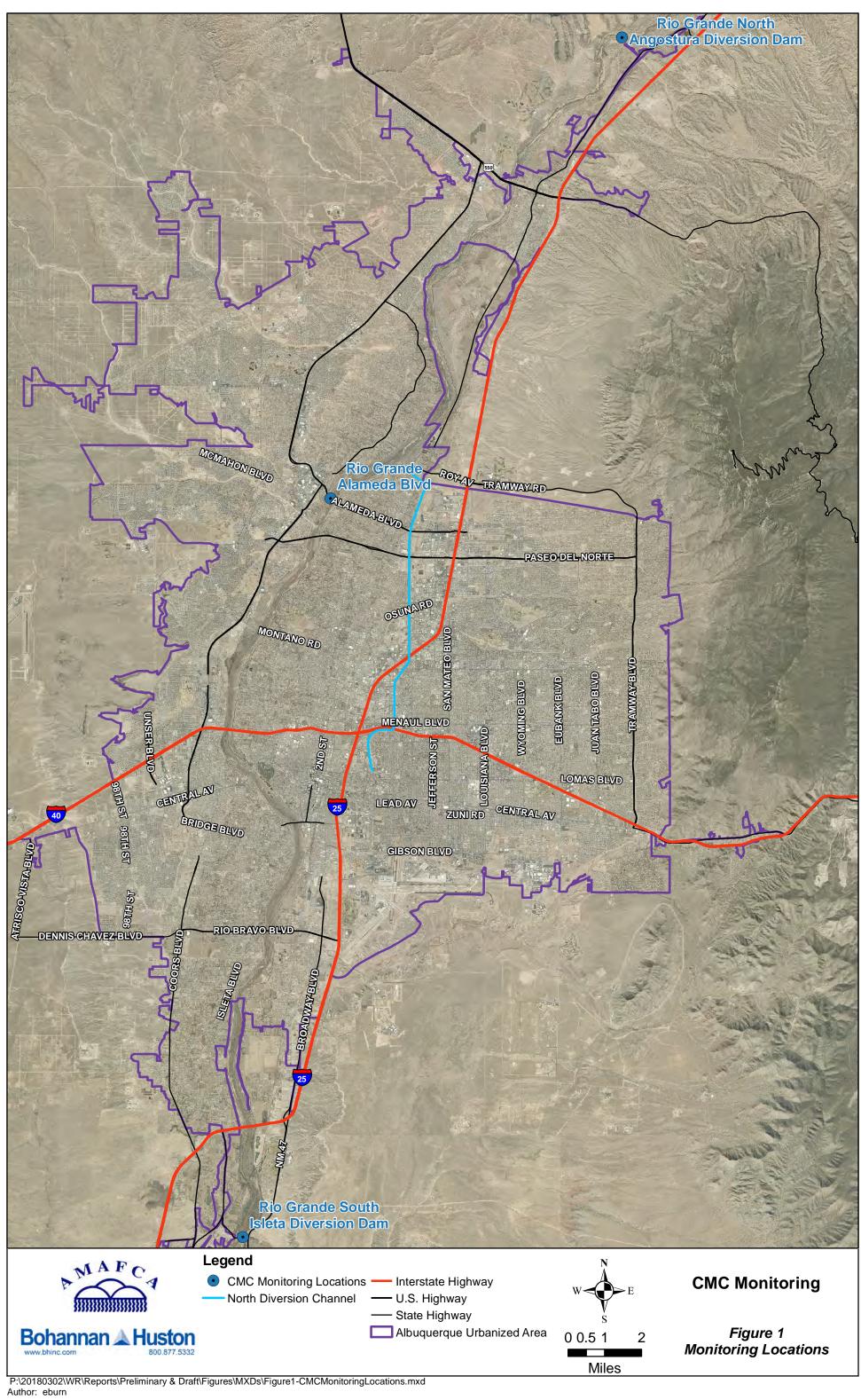
Notification of In-Stream Water Quality Exceedances

For downstream notification purposes, the following parameters for in-stream samples taken in the Rio Grande for the FY 2021 wet season had results that exceeded applicable water quality standards for one or more samples: E. coli and Polychlorinated Biphenyls (PCBs). Table 1 summarizes the samples with exceedances and the applicable water quality standard (WQS) that was exceeded. Additional details on the sampling results are provided in this memo.

	Parameters, Applicable Water Quality Standard (WQS), and Results Exceeding Applicable WQS				
Compling Data	E. coli	PCBs			
Sampling Date Location	WQS: 88 CFU/100 ml Pueblo of Isleta Primary Contact Ceremonial &	WQS: 0.00017 ug/L Pueblo of Isleta Human Health Criteria (based on fish			
	Recreational	consumption only)			
10/26/2020 Rio Grande North Angostura Diversion Dam	141 CFU/100ml	No Exceedance			
10/26/2020 Rio Grande South Isleta Diversion Dam Pre-Storm Sample – E. coli Only	>2419.6 CFU/100ml	Not Tested			
10/28/2020 Rio Grande at Alameda Bridge E. coli Only	98.5	Not Tested			
10/28/2020 Rio Grande South Isleta Diversion Dam	>2419.6 CFU/100ml	0.000956 ug/L			

Table 1: Parameters Detected Above Applicable Water Quality Standards CMC FY 2021 Wet Season Monitoring

Overview of Stormwater Monitoring Activity


Bohannan Huston, Inc. (BHI) has been tasked to perform water quality services for the Compliance Monitoring Cooperative (CMC) Stormwater Data Verification, Database, and Reporting for the Wet Weather Stormwater Quality Monitoring Program for Fiscal Year (FY) 2021 (July 1, 2020 to June 30, 2021). The scope of work for this task includes data verification of the stormwater laboratory analysis results, compiling the analysis results into a database, and calculating the E. coli loading to compare with the Waste Load Allocation (WLA) for the qualifying storm events. The stormwater compliance monitoring is being conducted separately by Daniel B. Stephens & Associates, Inc. (DBS&A) and is not a part of this task. This task is being conducted to assist the CMC members with their comprehensive monitoring and assessment program for compliance under the 2014 Middle Rio Grande (MRG) Watershed Based Municipal Separate Storm Sewer System (MS4) Permit, NPDES Permit No. NMR04A000 ("WSB MS4 Permit").

The WSB MS4 Permit entered Administrative Continuance in December 2019 when U.S. Environmental Protection Agency (EPA) Region 6 did not issue a new MS4 Permit before the current MS4 Permit's expiration date. The MRG Technical Advisory Group (TAG) sent EPA a letter dated October 15, 2019, acknowledging Administrative Continuance after the expiration date of the 5-year Permit term. Until a new MS4 Permit is issued, there are no compliance monitoring requirements for the CMC in the Rio Grande. As identified in the CMC Monitoring Plan, the WSB MS4 Permit required a minimum of seven (7) storm events be sampled at both the Rio Grande North and Rio Grande South locations (refer to Figure 1, page 3). All Permit required samples have been obtained by the CMC, as well as the sample obtained in FY 2021 during Administrative Continuance; all CMC samples are summarized in Table 2 below.

No. of Storm Events Required to Sample	CMC-WSB MS4 Permit Required Samples per Season	FY (Date) Samples Obtained for CMC
1	#1 Wet Season	FY 2017 (8/10/2016)
2	#2 Wet Season	FY 2017 (9/12/2016)
3	#3 Wet Season	FY 2017 (9/21/2016)
4	#1 Dry Season	FY 2017 (11/21/2016)
5	#2 Dry Season	FY 2019 (3/13/2019)
6	Any Season	FY 2018 (Wet Season - 7/27/2017)
7	Any Season	FY 2018 (Wet Season - 9/27/2017)
Not Required	Wet Season	FY 2021 (10/28/2020)

Table 2: CMC Sample SummaryCompared to WSB MS4 Permit Requirements

During WSB MS4 Permit Administrative Continuance, the CMC members chose to continue sampling within the Rio Grande to support their MS4 program needs and gather additional data in support of the future MS4 Permit compliance. This memo reports on the wet weather stormwater monitoring activity for the FY 2021 wet season (July 1, 2020 to October 31, 2020).

The CMC Excel database was updated with the FY 2021 wet season, wet weather monitoring data as results were received. The database contains sample location, sample date, analyses conducted, methods used, applicable surface water quality standards (WQS), WSB MS4 Permit required Minimum Qualification Levels (MQL) and results. Any unusable data will be identified.

Summary of the CMC Sampling Plan

Sampling Parameters:

Samples from both the Rio Grande North and Rio Grande South monitoring locations were analyzed for the parameters defined in the EPA approved WSB MS4 CMC Monitoring Plan, May 5, 2016. The parameter list for both locations, which is intended to characterize stormwater discharges into the river, is as follows:

Total Suspended Solids (TSS) Total Dissolved Solids (TDS) Chemical Oxygen Demand (COD) Biological Oxygen Demand – 5-day (BOD₅) Dissolved Oxygen (DO) Oil & grease (N-Hexane Extractable Material) E. coli pН Total Kjeldahl Nitrogen (TKN) Nitrate plus Nitrite **Dissolved Phosphorus** Ammonia plus Organic Nitrogen (Nitrogen, Ammonia and Nitrogen, Total) Phosphorous (Total Phosphorous) Polychlorinated Biphenyls (PCBs - Method 1668A) Gross Alpha, adjusted Tetrahydrofuran Benzo(a)pyrene Benzo(b)fluoranthene (3, 4 Benzofluoranthene) Benzo(k)fluoranthene Chrysene Indeno (1,2,3-cd) Pyrene Dieldrin Pentachlorophenol Benzidine Benzo(a)anthracene Dibenzofuran Dibenzo(a, h)anthracene Chromium VI (Hexavalent) Copper – Dissolved Lead – Dissolved Bis (2-ethylhexyl) phthalate Conductivity Temperature

Hardness (as CaCO3) was added to the parameter list to allow dissolved metal results to be compared to the applicable WQSs. DO, pH, conductivity, and temperature are required by the WSB MS4 Permit to be analyzed in the field during sample collection, which was conducted by DBS&A, within 15 minutes of sample collection. All E. coli samples were submitted to the laboratory within eight (8) hours of collection in order to meet the specified hold time.

Sampling Locations:

The sampling locations are shown in Figure 1, page 3.

Rio Grande North – In-stream sampling within the Rio Grande was performed upstream of the Angostura Diversion Dam at the north end of the watershed. The location is upstream of all inputs from the Urban Area (UA) to the river and provides the background water conditions.

Rio Grande South – In-stream sampling within the Rio Grande was performed at the Isleta Bridge at the south end of the watershed. The location is downstream of all inputs from the UA to the river and provides the downstream water conditions. These locations have been accepted by EPA and New Mexico Environment Department (NMED) to meet the WSB MS4 Permit requirements in Part III.A.

During this FY 2021 wet season, an E. coli only sampling point was added within the Rio Grande at Alameda Blvd. This is the location of the NMED defined stream segment divide. This sample point was added after discussion with NMED in February 2017 regarding potential refinements to E. coli loading calculations.

Sample Collection:

As mentioned previously, sample collection for the CMC is being conducted by DBS&A (through a separate on-call contract) as well as by CMC members. Since BHI was not involved, this task and memo do not address the details of the methodologies regarding sampling, determining if an event was a qualifying storm event, or determining the timing of the hydrograph at the Rio Grande Alameda and Rio Grande South locations.

DBS&A provided BHI with their field notes and field sample data (temperature, DO, specific conductivity, and pH) for the FY 2021 wet season sampling. AMAFCA provided BHI the completed laboratory analysis reports from Hall Environmental Analysis Laboratory (HEAL) for this monitoring season.

Quality Assurance Project Plan (QAPP):

AMAFCA provided BHI with the Draft Quality Assurance Project Plan (QAPP) for the CMC dated June 14, 2016. DBS&A followed this QAPP during sample collection. BHI used this QAPP and the included standard operating procedures (SOPs) for the data verification and validation.

Monitoring Activity & Lab Analysis Summary

The list below provides a summary of the CMC comprehensive monitoring program activities completed for the FY 2021 wet season from July 2020 through October 2020. One (1) qualifying storm event was sampled and analyzed during the FY 2021 wet season.

October 26-28, 2020 – Qualifying Storm Event – Full Analysis of Samples. A sample was collected at the Rio Grande North location beginning at 9:45 a.m. on October 26 and sent to the laboratory for an E. coli and BOD test. A pre-storm sample was collected at the Rio Grande South location beginning at 12:45 p.m. on October 26 and sent to the laboratory for an E. coli test. The CMC determined that the storm event beginning October 26 was a qualifying storm event. A sample in the Rio Grande at Alameda Blvd. was obtained at 12:05 p.m. on October 28. A Rio Grande South sample was collected beginning at 1:15 p.m. on October 28; the samples from the North (from October 26), Alameda Blvd., and South locations were taken to the HEAL laboratory for full parameter testing.

Stormwater Quality Database for CMC

As stated previously, there was one (1) qualifying storm event during the FY 2021 wet season, wet weather monitoring sampled by the CMC, which occurred October 26-28, 2020. DBS&A's field notes containing DO, pH, conductivity, and temperature measurements, as well as sampling comments have been received, and field results have been added to the database. Additionally, the HEAL lab reports for the corresponding time period have been received, added to the database, and are provided with this memo (Attachment 1). The laboratory reports attached to this memo have BHI added comments including the field parameter measurements and other relevant notes related to the laboratory report.

Database Data Entry:

The CMC Excel database was updated with the FY 2021 wet season, wet weather monitoring data. The database contains sample locations, sample date, analyses conducted, methods used, applicable surface water quality standards (WQS), WSB MS4 Permit required Minimum Quantification Levels (MQL), and analysis results. The database was updated under this Task to include the Rio Grande at Alameda sample location. Applicable surface WQSs found in New Mexico Administrative Code (NMAC) 20.6.4, as well as the Pueblo of Isleta WQSs, are entered in the Excel database for comparison purposes with testing results. There is an indicator in the database to show if the monitoring results exceed the applicable surface WQS. An exceedance is not a violation of the WSB MS4 Permit, as the Permit does not have numeric discharge limitations. These ">WQ Standard" flags simply and quickly show the CMC members where the results of the lab data exceed the applicable WQS.

Water quality data was entered into the database upon receipt of the lab reports. All data entered into the database is initially denoted with a "P" to indicate that it is provisional and has not been through the verification and validation process yet. Full parameter analyses of qualifying storm events for both Rio Grande North and Rio Grande South locations were entered respectively into the database. In addition, the E. coli only samples from the Rio Grande Alameda location were also entered into the database.

Data Verification and Validation:

The HEAL laboratory analysis reports were provided to BHI by AMAFCA. The lab reports also contain the Chain of Custody for the submitted samples. Field data was requested by and provided to BHI by DBS&A. Data verification and validation (V&V) was conducted by BHI on all field notes, lab reports, and Chain of Custody documents in accordance with the CMC Water Quality Standard Operating Procedure (SOP) #2, which is part of the existing CMC QAPP, Draft June 14, 2016.

These procedures are based on EPA Guidance for Environmental Data Verification and Validation (EPA, 2008).

As stated in the QAPP, the V&V process was completed by a different person than the one who entered the data into the database. The V&V process included use of the *Data Verification and Validation Worksheet* (provided in the QAPP). For this task, field data was verified first, confirming all field notes were complete. BHI handled field parameter questions directly with DBS&A. Chemical data verification began as soon as the lab reports were received, checking that all parameters were tested and looking for any obvious exceedances of WQS. Other steps listed on the *Data Verification and Validation Worksheet* were completed after all data from the laboratory was received and entered into the database. Sample blank results were reviewed to identify potential contamination during field processing or transport. Replica/duplicate samples were evaluated based on relative percent difference (as described in more detail in the QAPP) to determine the variability of the samples.

There were not any CMC FY 2021 wet season data that did not meet the appropriate QA/QC requirements. If there were any data that did not meet the appropriate QA/QC requirements, it would have been assigned an appropriate laboratory qualifier or validation codes. A summary of validation codes is provided in the QAPP.

Once the V&V process was completed, the worksheets were signed. Copies of the V&V worksheets are provided with this memo (Attachment 2). In the database, data that was checked during the V&V process was then changed from being denoted with a "P" for provisional to a "V" for verified, and laboratory qualifiers were added, as needed.

CMC FY 2021 Wet Season Assessment and Evaluation of Monitoring Results

The EPA approved WSB MS4 CMC Monitoring Plan, May 5, 2016, has 33 parameters to monitor at the Rio Grande North and Rio Grande South monitoring locations. Of these 33 parameters, 16 parameters were not detected in the FY 2021 wet season samples at either the Rio Grande North or South locations. Refer to Table 3 for a list of the parameters that were not detected.

Parameters Not Detected								
COD	Dieldrin							
Oil and Grease (N-Hexane Extractable Material)	Pentachlorophenol							
Tetrahydrofuran	Benzidine							
Benzo(a)pyrene	Benzo(a)anthracene							
Benzo(b)fluoranthene (3, 4 Benzofluoranthene)	Dibenzofuran							
Benzo(k)fluoranthene	Dibenzo(a,h)anthracene							
Chrysene	Chromium VI (Hexavalent)							
Indeno (1,2,3-cd) Pyrene	Bis (2-ethyhexyl) Phthalate (other names: Di(2-ethylhexly)phthalate, DEHP)							

Table 3: Parameters Not DetectedCMC FY 2021 Wet Season Monitoring

For the remaining 17 parameters on the CMC monitoring parameter list, only two (2) parameters (E. coli and PCBs) had exceedances of the applicable surface WQS found in New Mexico Administrative Code (NMAC) 20.6.4 and the Pueblo of Isleta WQS during the FY 2021 wet season. These exceedances are summarized on Table 1, page 1, and discussed below in further detail.

E. coli:

The E. coli results collected during the FY 2021 wet season are summarized in Table 4.

Date – Rio Grande Location	E. coli Results (CFU/100 ml)
October 26, 2020 – North	141
October 26, 2020 – South	>2419.6
October 28, 2020 – Alameda	98.5
October 28, 2020 – South	>2419.6

Table 4: E. coli Results CMC FY 2021 Wet Season Monitoring

At the Rio Grande North location (upstream of the Albuquerque UA, at the Angostura Diversion Dam), one (1) sample was collected and tested for E. coli and the lab result exceeded the primary contact-single sample Pueblo of Isleta and Pueblo of Sandia WQS (88 CFU/100 mL), but was below the primary contact-single sample NMAC WQS (410 CFU/100 mI). At the Rio Grande South location (downstream of the MS4 UA), two (2) samples were collected and tested for E. coli and both of these samples had results that exceeded the Pueblo of Isleta and Pueblo of Sandia WQS (88 CFU/100 mL) and also exceeded the primary contact-single sample NMAC WQS (410 CFU/100 mL).

In addition, the CMC added an E. coli sample point in the Rio Grande at Alameda. This added analysis point was based on discussions with NMED in February 2017 on collecting actual data at the stream segment divide verses using an area percentage (as defined in the TMDL) for E. coli loading calculations. For the FY 2021 wet season storm event, a sample was collected at the Alameda location and the lab result exceeded the primary contact-single sample Pueblo of Isleta and Pueblo of Sandia WQS (88 CFU/100 mL), but was below the primary contact-single sample NMAC WQS (410 CFU/100 ml).

Monthly geometric mean values were not able to be calculated and compared to applicable WQSs because the CMC had only one (1) sample per location. As a reminder, in January 2017 the CMC members clarified with NMED that the units MPN/100 mL and CFU/100 mL are considered to be interchangeable for the purposes of this stormwater quality monitoring reporting. The New Mexico and Pueblo WQS for E. coli are currently in units of CFU/100 mL while the lab reports are typically in units of MPN/100mL. The graph presented in this section uses units of CFU/100 mL to be consistent with the WQS units. Refer to Figure 2 for a graphical representation of E. coli results from October 2020.

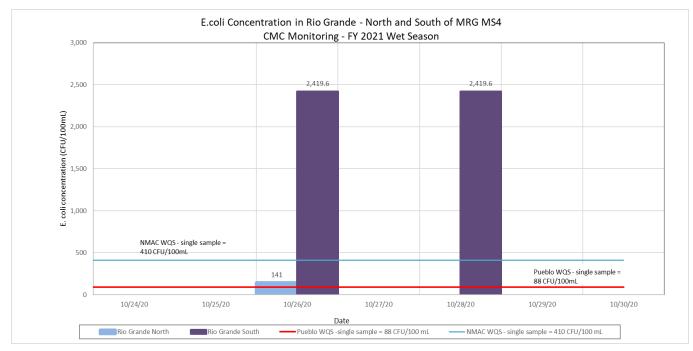


Figure 2: E. coli Results in Rio Grande CMC Monitoring – FY 2021 Wet Season

PCBs:

There are multiple surface WQS values listed for PCBs in both the Pueblo of Isleta and the State of New Mexico standards for the various designated uses. The PCBs measured in samples collected from the Rio Grande during the FY 2021 wet season stormwater event were all below the minimum quantification level (MQL) established in EPA standards for the MS4 NPDES Permit (Appendix F, 0.2 ug/L for PCBs). The PCB results were also well below the New Mexico Surface WQSs and Pueblo of Isleta Surface WQSs for designated uses including drinking water (0.5 ug/L) and wildlife habitat, acute aquatic life, and chronic aquatic life (0.014 ug/L). However, the CMC sample from the Rio Grande South location was above the Pueblo of Isleta human health criteria (based on fish consumption only) WQS for surface waters. The human health-organism only criterion is based upon human consumption of fish and other aquatic life that bioaccumulate contaminants over time. The PCB results from 2016 through 2020 are shown in Figure 3 relative to several of the WQSs for PCBs.

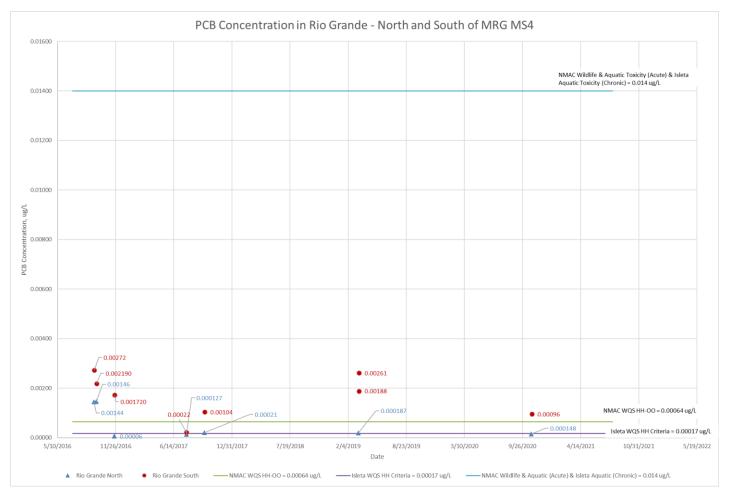


Figure 3: PCB Monitoring Results in Rio Grande CMC Monitoring – 2016 - 2020

Dissolved Oxygen and Temperature:

Two (2) of the water quality parameters are specifically worth mentioning in this memo because they are listed in the WSB MS4 Permit, Part I.C.1 – Special Conditions: dissolved oxygen and temperature. These parameters did not have any surface water quality exceedances during the FY 2021 wet season sampling.

Dissolved oxygen is a water quality concern in the Rio Grande if it is below 5 mg/L. None of the samples taken from the Rio Grande during the FY 2021 wet season monitoring had dissolved oxygen values below 5 mg/L. This provides the MS4s with specific monitoring data showing that stormwater did not cause or contribute to exceedances of applicable dissolved oxygen water quality standards in the Rio Grande from any of the CMC samples from 2016 to 2020. Refer to Figure 4 for CMC dissolved oxygen results and comparison to applicable WQSs.

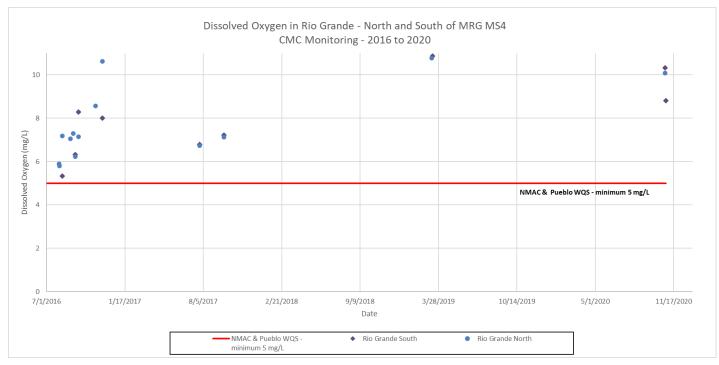
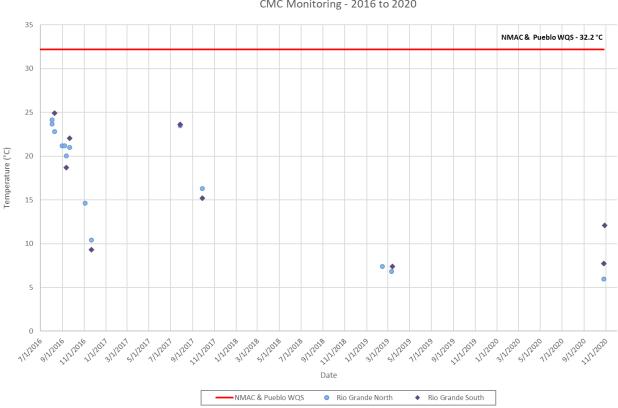



Figure 4: Dissolved Oxygen Results in Rio Grande CMC Monitoring – 2016 - 2020

Temperature is listed in the WSB MS4 Permit as a special condition (currently only applicable to the City of Albuquerque and AMAFCA). Past data submitted to EPA and NMED by the MS4 permittees have proven that stormwater discharges into the Rio Grande are not raising the Rio Grande temperature above the WQSs. The data collected during this FY 2021 wet season monitoring also supports this conclusion. All the temperature field readings taken in the Rio Grande during the CMC FY 2021 wet season were below 32.2°C (90 °F) - the WQS for the State of New Mexico and for the Isleta and Sandia Pueblos. Refer to Figure 5 for temperature results and comparison to applicable WQSs for all CMC samples taken upstream and downstream of the MRG MS4 area from 2016 to 2020.

Temperature in Rio Grande - North and South of MRG MS4 CMC Monitoring - 2016 to 2020

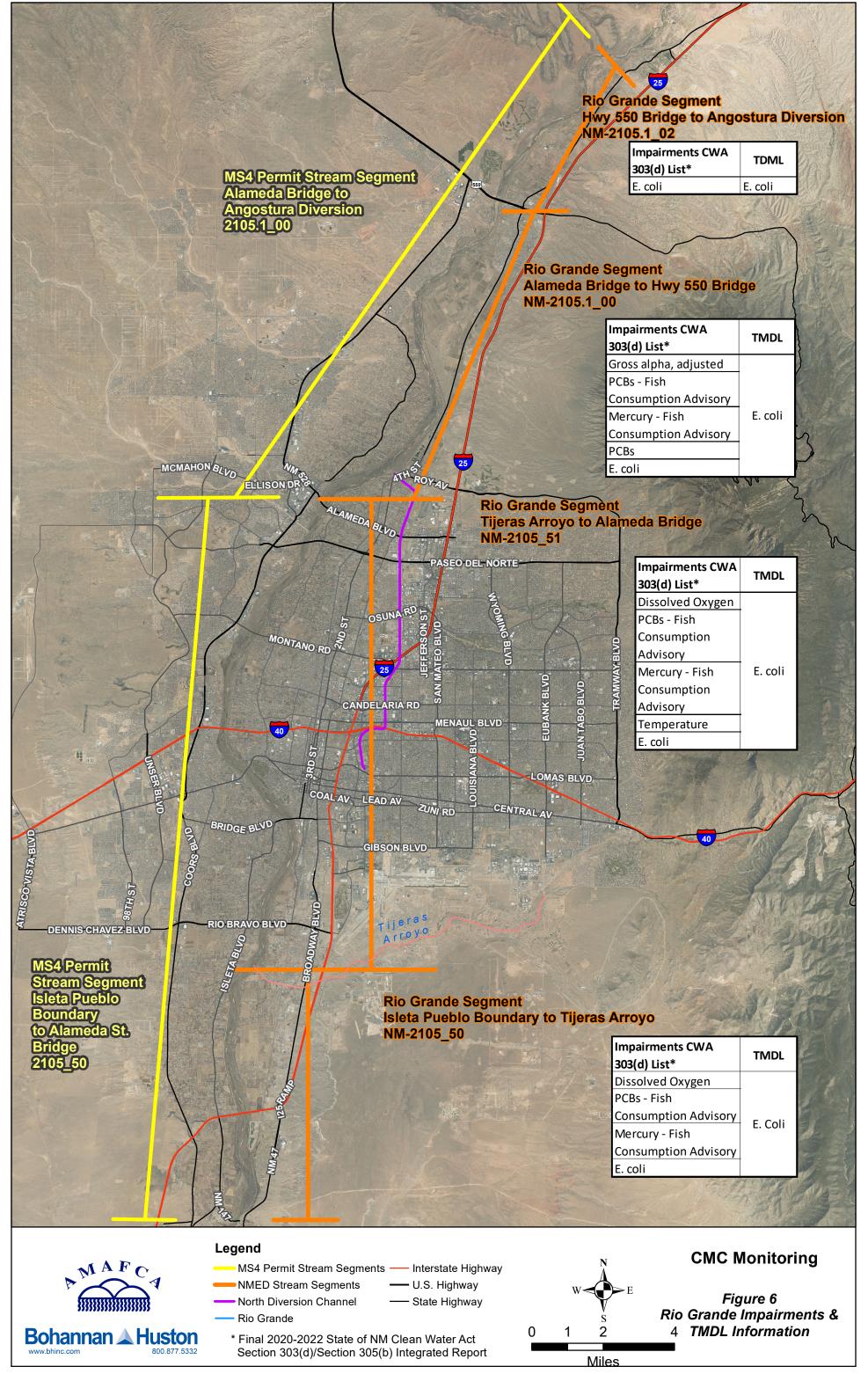
Figure 5: Temperature Monitoring Results in Rio Grande CMC Monitoring – 2016 - 2020

CMC FY 2021 Wet Season E. coli Loading Calculations and Waste Load Allocation (WLA)

Related to assessing the stormwater results, BHI has calculated the E. coli loading and compared it to the aggregate Total Maximum Daily Load (TMDL) Waste Load Allocation (WLA) for the CMC group. A TMDL is the maximum amount of a pollutant (E. coli in this case) that a water body (Rio Grande) can assimilate on a daily basis without violating applicable surface WQS. The total TMDL for a stream segment consists of the multiple WLA for point sources, non-point sources, and natural sources, plus a margin of safety. The CMC MS4 allotted WLA was determined in the EPA Approved, Total Maximum Daily Load for the Middle Rio Grande Watershed, June 30, 2010, and subsequent communications with NMED. The WLA varies by flow condition in the Rio Grande and by stream segment.

E. coli loading calculations and comparison to the WLA follows the WSB MS4 Permit requirements in "Discharges to Water Quality Impaired Water Bodies with an Approved TMDL," Part I.C.2.b.(i).(c).B, Appendix B-Total Maximum Daily Loads (TMDLs) Tables of the WSB MS4 Permit, and the NMED guidance provided to the CMC. Attached to this memo is the WLA Calculation spreadsheet which steps through the E. coli loading calculations and assumptions comparing the calculated E. coli loading to the CMC aggregate WLA defined by NMED.

There are two (2) stream segments defined in the WSB MS4 Permit (Appendix B): Isleta Pueblo Boundary to Alameda Street Bridge (Stream Segment 2105_50) and Non-Pueblo Alameda Bridge to Angostura Diversion (Stream Segment 2105.1_00). These stream segments differ from NMED's current stream segments defined in "2020-2022 State of New Mexico Clean Water Act Section 303(d)/Section 305(b) Integrated Report," December 8, 2020. NMED currently has four (4) stream segments instead of the two (2) WSB MS4 stream segments. These various stream segment designations are shown in Figure 6, page 14.


The NMED 303(d)/305(b) 2020-2022 Integrated Report tables show the most recent assessment results, and currently all segments of the Rio Grande (Isleta to Angostura Diversion) are impaired for E. coli and have a TMDL for E. coli.

The E. coli daily loading associated with the CMC group and comparison to the NMED WLA was completed for the one (1) qualifying wet season storm event – October 26-28, 2020. For this event, the CMC obtained an E. coli sample in the Rio Grande at Alameda and used this to calculate the E. coli loading for the two (2) river segments. Refer to Table 5 for a summary of the WLA comparison results. A spreadsheet is attached to this memo that provides the detailed WLA calculations.

Date / Stream Segment	Daily Mean Flow (cfs)	Flow Conditions (cfs) range defined by NMED	CMC Daily E. coli Loading (CFU/day)	NMED WLA for CMC for Stream Segment and Flow Conditions	Loading Compared to WLA Potential Exceedance or Acceptable			
October 26-28, 2020 – Rio Grande North E. coli Concentration = 141.4 CFU/100 mL Rio Grande at Alameda E. coli Concentration = 98.5 CFU/100 mL Rio Grande South E. coli Concentration = >2419.6 CFU/100 mL								
Alameda to Angostura 146		Low	0.00E+00	1.68E+10	WLA Acceptable			
Isleta to Alameda	180	Low	1.99E+11	3.42E+09	WLA Potential Exceedance			

As Table 5 illustrates, the E. coli loading for the October 26-28, 2020 storm event for the northern segment (Alameda to Angostura) was below the WLA for the CMC MS4s. This analysis used the mid-point E. coli sample result obtained in the Rio Grande at Alameda. The E. coli loading for the southern segment for the October 26-28, 2020 storm event potentially exceeded the CMC allocated WLA.

The WSB MS4 Permit implies that the WLA is a measurable goal for the MS4s related to E. coli. Based on extensive review of the EPA Approved, Total Maximum Daily Load (TMDL) for the Middle Rio Grande Watershed, June 30, 2010, this seems to be an unattainable goal for MS4s. On page 40, the 2010 TMDL Report states, "It is important to remember that the TMDL is a planning tool to be used to achieve water quality standards...Meeting the calculated TMDL may be a difficult objective." The TMDL/WLA was calculated by NMED to meet the Pueblo (Sandia and Isleta) geometric mean maximum of 47 CFU/100 mL, which was done to be "protective of

P:\20210236\WR\Reports\Preliminary & Draft\Figures\MXDs\Figure6-MS4_TMDLStreamSegments_2021_0416.mxd Author: SThompson

August 2021

downstream waters" and "to provide an implicit margin of safety (MOS)." A single grab sample E. coli result meeting this very low geometric means WQSs will be very difficult for the MS4s to obtain.

The CMC members discussed the difficulty of using the WLA as a measurable goal with NMED on February 1, 2017. NMED explained that exceeding the WLA does not trigger enforcement. However, NMED strongly encouraged the MS4s to document what they are doing once they realize the WLA is potentially exceeded. The meeting on February 1, 2017, and the CMC discussion with NMED on February 16, 2017, demonstrate CMC members are working toward understanding the WLA. In addition, the CMC members began implementing a refinement to the sampling plan discussed with NMED by obtaining an E. coli sample in the Rio Grande at Alameda effective the FY 2018 wet season, as feasible. This demonstrates that the CMC is continuing to investigate the potential exceedances and make improvements to monitor E. coli in the Rio Grande.

Data Entry for Discharge Monitoring Reports

The WSB MS4 Permit entered Administrative Continuance in December 2019 when EPA Region 6 did not issue a new MS4 Permit before the current MS4 Permit's expiration date. Until a new MS4 Permit is issued, there are no compliance monitoring requirements for the CMC in the Rio Grande. As identified in the CMC Monitoring Plan, the WSB MS4 Permit required a minimum of seven (7) storm events be sampled at both the Rio Grande North and Rio Grande South locations. All MS4 Permit required samples have been obtained by the CMC and verified stormwater quality data from these required events have been submitted to the EPA using electronic Discharge Monitoring Report (DMR) forms. Data from the DMRs are uploaded to a comprehensive nation-wide database that contains discharge data for facilities and other point sources that discharge directly to receiving streams. For this Task, BHI has not completed any data entry related to the EPA DMRs for the FY 2021 wet season.

Conclusions and Planning

During the FY 2021 wet season (July 1 to October 31, 2020), one (1) qualifying stormwater sample was obtained by the CMC. Lab results were received, and this data has been entered into the CMC Excel database. The lab data entered is marked in the spreadsheet as "V" (verified), and data V&V has been completed (refer to Attachment 2).

To summarize, monitoring results and E. coli loading calculations for the FY 2021 wet season show that:

- The WSB MS4 Permit entered Administrative Continuance in December 2019 when U.S. Environmental Protection Agency (EPA) Region 6 did not issue a new MS4 Permit before the current MS4 Permit's expiration date. Until a new MS4 Permit is issued, there are no compliance monitoring requirements for the CMC in the Rio Grande. All MS4 Permit required samples have been obtained by the CMC, as well as the one sample obtained in FY 2021, as reported in this memo, during Administrative Continuance.
- For the FY 2021 wet season, 16 of the 33 parameters tested were not detected in any of the Rio Grande North or South samples.

- Several key parameters all met the applicable WQSs, as they have for all the CMC samples to date:
 - \circ All dissolved oxygen results were greater than 5 mg/L (minimum WQS).
 - All temperature results were less than 32.2 °C (maximum WQS).
- The PCB results were below the New Mexico Surface WQSs and Pueblo of Isleta Surface WQSs for designated uses including drinking water, wildlife habitat, acute aquatic life, and chronic aquatic life. However, the Rio Grande South CMC sample from October 28, 2020 was above the Pueblo of Isleta human health criteria (based on fish consumption only) WQS for surface waters.
- The calculated E. coli loading for the October 26-28, 2020 storm event for the northern segment (Alameda to Angostura) was below the WLA for the CMC MS4s. This analysis used the mid-point E. coli sample result obtained in the Rio Grande at Alameda. The E. coli loading for the southern segment for the October 26-28, 2020 event potentially exceeded the CMC allocated WLA.
 - Sources for the E. coli loading measured in the river are not solely attributable to the CMC MS4 members; the E. coli loading calculations serve to provide a reasonable estimate of the CMC contribution to the measured E. coli loading.
 - This sampling and calculation approach is only an estimate of the CMC contribution to the E. coli loading which is why the term "potential exceedance" is used.
 - The in-stream data does not provide the concentration of E. coli contributed by only the CMC MS4s or any of the other potential sources. By using this percentage calculation approach, if other contributors are in exceedance of the WLA, then the CMC will likely also be in exceedance since this approach relies on a percentage of a total.

For planning purposes for the CMC members, the FY 2021 dry season monitoring activity (weather permitting), analytical results, and E. coli loading calculations will be summarized by BHI for the CMC in a memo due August 20, 2021.

SG/ab

Attachments:

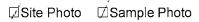
Attachment 1 – Hall Environmental Analysis Laboratory Reports with BHI Notes for FY 2021 Wet Season & DBS&A Field Data

Attachment 2 - FY 2021 Wet Season Completed Data Verification and Validation (V&V) Forms

Spreadsheets Included Separately:

E. coli Loading and Comparison to Waste Load Allocation (WLA) Excel Spreadsheet Excel CMC Spreadsheet with FY 2021 Wet Season Stormwater Quality Monitoring Results

ATTACHMENT 1


HALL ENVIRONMENTAL ANALYSIS LABORATORY REPORTS WITH BHI NOTES FOR FY 2021 WET SEASON & DBS&A FIELD DATA

				Sar	mplers _ Elizab	eth Bostien	~
		<u>CMC</u>	: Samp	oling Data S	heet Kyl	ian Robhne	h
Site Identific	ation: RG	-Noth-	20201	26 Rie	o Carande @ f	Ingestore Dan	<u>1</u>
Notes: Ve	ry Cold o	nd wind	hy' sa	titud precip	2	0	_
-	ample Date a					-	7
An				201026	:50		-
QC Sample	s: Duplica	ate /(None	QC Sa	ample ID: NA			
QC samples		FERENT sa	ample time	than the environme	ntal sample.		
Full Suite C	Collection Po	int : Ane	ster Der				
Full Suite Sa	ample Volume	= 6 gallo	NS C	ollection Time Start	:9:45 End:	10:30	_
	neters for ea	1,5					
Grab	Time	Temp (°C)	рН	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)	ा ज्य
1	9:45	5,90	6.76	389	10.51	83.8	ב [ב
2	10:00	7,59	7,89	384	10,75 - 8:27-ib	89,8	23
3	10:15	7,49	8,46	384	10,70 47456	963	3 د [
4	15.30	7.53	8.57	386	9,59	80.)	
Composite	10:35	5.94	649	365	10.08	80,8	
☐Turbid Wa	ater Þ¢Colo	rstightly yellow	Solid	s <i>□</i> Oil/Sheen	□Foam □Odor	- plo	

Analytical -see 2020 COC table

Site Photo

				Sar	mplers Er	Butten K. Ro	Luon
		<u>CM(</u>	C Sam	oling Data S	<u>heet</u>		
Site Identific	ation: Islet	a Dam	· RG	- South - 20	201026		_
Notes: Nc	my lold an) Windy					-
Full Suite S	ample Date a	and Time:	10/26/2	, 12:145]
				20201026			
QC Sample:	s: Duplica	ate / None>	QC Sa	ample ID:			1
QC samples		-FERENIS	ampie time	than the environme	ntal sample.		
					L		1
Full Suite C	ample Volume	<u>mt: ۲</u> ۷	te Ven y	widge w/ burfi iollection Time Start:	デ こうえいやく End:	12:45]
	neters for eac						•
Grab	Time	Temp (°C)	pH	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)	621
1	12:40	7.71		591	10.33	86.1	246
2							
3			NA				
4				EB			
Composite							
□Turbid Wa	ater ØColo	r 5/10 bry yell	Solid: ઝન	s 🖾 Oil/Sheen 🛛	□Foam ⊠Odor	Irght cend	-
Analytical -	see 2020 CO						

、

*

١

				Sar	mplers ElBastie	~ + Kylian	Robin
		<u>CM</u>	C Sam	pling Data S	<u>heet</u>		
ite Identific	ation: RG	@ Alay	meda I	Bridge,			_
otes: Sh	wy could	ions ~ ?	inches	Bridge on bridge ;	steady in R	Ĝ	
E. Oli ent						t]
				-20201024			
QC Sample	s: Duplic	ate / None	QC Sa	ample ID: N/A			
QC sample. QC Sample	s require a Dl			than the environme	ental sample.		
6,001				1			
	Collection Po ample Volum	v		Collection Time Start	: 12:05 End:	12:05	
Field Paran	neters for ea	ch 2-gallon	grab	Specific	Dissolved Oxygen	Dissolved Oxygen	
Grab	Time	(°C)	рН	Conductance (µS/cm)	(mg/L)	(%)	OR
1	1205	6.94	7.24	437	12.52	104.2	22
2							
3				EB			
4				EB 10	AN A		
Somposite							
□Turbid W	∎ ater ⊈/Cold	Dry. light yes	<u>ا</u> Solid س	s ⊡Oil/Sheen	⊥ □Foam □Odoi		

Analytical -see 2020 COC table

☑ Site Photo ☑ Sample Photo

Samplers E. Destin K. Rabinson									
		<u>CMC</u>	Samp	oling Data S	<u>heet</u>				
Site Identific	ation: RG	-South	- 2020	1028 I	sleta Dam		_		
Notes:							_		
Full Suite S	ample Date a	and Time:	Prela	0 14:10]		
				- 20201028					
QC Sample	s: Duplica	ate None	QC Sa	ample ID:	ntal comple		-		
QC samples QC Sample		-FE RE INT Sa	ampie time	than the environme	mai sampie.				
Full Suite C	collection Po	int : had	west of	middle from	Dam]		
	ample Volume			ollection Time Start		14:00	-		
Field Paran	neters for eac	۱,5 ch 2-gallon	grab						
Grab	Time	Temp (°C)	рН	Specific Conductance (µS/cm)	Dissolved Oxygen (mg/L)	Dissolved Oxygen (%)	ORP (mv)		
1	13(15	11,24	8,14	591	10.46	G 5.2			
2	13:30	11.95	7.93	593	9,40	87.3	224.1		
3	13:45	12.80	8.25	580	9,55	90.5	232.4		
4	1400	13.52	8.17	590	8.58	82.6	243.8		
Composite	1410	12.06	8.11	589	8.81	81.9	233.6		
⊡Turbid Wa Analytical -	ater IDColo Clow see 2020 CO	r <u>lr94+yella</u> Ydy IC table	6 1/1	s ⊡Oil/Sheen i hù ls/ica¥e ≯	□Foam IIOdol _Clə&b	Slight Soap)		

Site Photo

October 28, 2020

Patrick Chavez AMAFCA 2600 Prospect Ave NE Albuquerque, NM 87107 TEL: (505) 884-2215 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

October 26, 2020 - Rio Grande North and South E. coli Lab Results Prior to Storm

OrderNo.: 2010B80

Dear Patrick Chavez:

RE: CMC

Hall Environmental Analysis Laboratory received 2 sample(s) on 10/26/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Field Parameters <u>Rio Grande North</u>-Temp = $5.94 \,^{\circ}$ C pH = 8.49Conductivity (uS/cm=umho/cm) = 385Dissolved Oxygen (mg/L) = 10.08<u>Rio Grande South</u>-Temp = $7.71 \,^{\circ}$ C pH = 8.5Conductivity (uS/cm=umho/cm) = 591Dissolved Oxygen (mg/L) = 10.33

Analytical Report
Lab Order 2010B80
Data Dapartade 10/28/2020

Hall Enviro	nmental Analy	sis Laboratory, Inc	•				Date Reported: 10/28/2	020
CLIENT: AMA	FCA		Cl	lient Sa	ample ID <mark>:</mark>	R6	-North-20200126	
Project: CMC			(Collect	tion Date:	10/	/26/2020 10:50:00 AN	1
Lab ID: 2010	380-001	Matrix: AQUEOUS Received Date: 10/26/2020 1:36:00 PM						
Analyses		Result	RL	Qual	Units 1	DF	Date Analyzed	Batch
SM 9223B FEC	AL INDICATOR: E. CO	LI MPN					Analys	t: SMS
E. Coli		<mark>(141.4</mark>)	1.000		MPN/100	1	10/27/2020 5:06:00 PM	1 56051

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 2

Analytical Report
Lab Order 2010B80
Data Papartad: 10/28/2020

Hall Environmental A	nalysis Laboratory, Inc				Date Reported: 10/28/	/2020	
CLIENT: AMAFCA		Clien	t Sample II	D <mark>:R6</mark>	-South-20200126		
Project: CMC		Collection Date: 10/26/2020 12:45:00 PM Matrix: AQUEOUS Received Date: 10/26/2020 1:36:00 PM					
Lab ID: 2010B80-002	Matrix: AQUEOUS						
Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch	
SM 9223B FECAL INDICATOR:	E. COLI MPN				Analy	st: SMS	
E. Coli	>2419.6	1.000	MPN/10	00 1	10/27/2020 5:06:00 P	M 56051	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 2

ANAL	RONMENTAL	Hall Environi TEL: 505-34 Website: clia	490 Albuquero 5-3975 FAX:	01 Hawkins nue, NM 87 505-345-4	^{NE} 7109 San 7107	nple Log-In Ch	neck List
Client Name:	AMAFCA	Work Order Nu	imber: 201	0B80		RcptNo:	1
Received By:	Juan Rojas	10/26/2020 1:36	00 PM		Juanang		
Completed By:	Cheyenne Cason	10/26/2020 1:41:					
Reviewed By:	Cn	WIZGh CI	400				
Chain of Cu	stody						
1. Is Chain of C	Custody complete?		Yes	V	No 🗌	Not Present	
2. How was the	e sample delivered?		Clie	nt			
Log In							
 VVas an atter 	mpt made to cool the sam	ples?	Yes		No 🗌	NA 🛄	
4. Were all sam	ples received at a temper	ature of >0° C to 6.0°C	Yes		No 🗌		
5. Sample(s) in	proper container(s)?		Yes		No 🗌		
6. Sufficient sar	nple volume for indicated	test(s)?	Yes		No 🗌		
7. Are samples (except VOA and ONG) properly preserved?			Yes		No 🗌		
8. Was preserva	ative added to bottles?		Yes		No 🗹	NA 🗌	
9. Received at I	east 1 vial with headspace	e <1/4" for AQ VOA?	Yes		No 🗌	NA 🗹	+-0
10. Were any sa	mple containers received	broken?	Yes		No 🔽	#of preserved	to
	ork match bottle labels? pancies on chain of custod	y)	Yes		No 🗌		1() 26 2 (12 unless noted)
12. Are matrices	correctly identified on Cha	ain of Custody?	Yes		No 🗌	Adjusted?	
13. Is it clear what	at analyses were requeste	d?	Yes	\checkmark	No 🗌		
	ing times able to be met? customer for authorization.)	Yes		No 🗌	Checked by:	/
Special Hand	ling (if applicable)						
15. Was client n	otified of all discrepancies	with this order?	Yes		No 🗌	NA 🗹	
Persor	Notified:	Da	ite:				
By Wh	om:	Via	a: 🗌 eM	ail 🗌 Pl	hone 🗌 Fax	In Person	
Regard							
Client	Instructions:						
16. Additional re	emarks:						
17. <u>Cooler Info</u> Cooler No 1	and the second	Seal Intact Seal No	o Seal D	ate	Signed By		

Chain-of-Custody Record		Turn-Around Time:					L ENVIRONMENTAL													
Client: AMAECA		⊠ Standard □ Rush				_														
		Project Name:		ANALYSIS LABORATORY www.hallenvironmental.com																
Mailing	Address	: 260	O Procept Ave	CMC Project #:		4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107														
		240	c house the																	
Phone #	#:			1.0.0		1		10	1. 00	0.0-0-	10 0.		-			uest				11.1
		ndun	en@ Amatin.050	Project Mana	ager:		()											TT		
email or Fax#: <u>DAWERS</u> Amagica.org QA/QC Package: □ Standard □ Level 4 (Full Validation)		Patrick chaven		TMB's (8021)	O / MR	PCB's		8270SIMS		PO4,			nt/Absei	the /						
Accreditation: Az Compliance		mpliance	Sampler: 12	. Whenson	, E. Bastien	TMB	/ DR	082	,	827		NO ₂ ,			esei	242				
NELAC Other			On Ice: Ø Yes D No				RO	es/8	504		SI			(OA)	Pr J	un				
	(Type)			# of Coolers: 1 Cooler Temp(including CF): 4,6-0-24,6 (°C)		ATB	D(G	sticid	thod	831	Meta	NO	(A)	Mi-∖	iforn	- CI				
Date	Time	Matrix	Sample Name	Container	Preservative		BTEX / MTBE /	TPH:8015D(GRO / DRO / MRO)	8081 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310 or	RCRA 8 Metals	CI, F, Br, NO ₃ ,	8260 (VOA)	8270 (Semi-VOA)	Total Coliform (Present/Absent)	E. edi-			
10-20/20		AQ	R6-Morth-20201026			001						121					х.			
10/24/20	1245	1.0	R6 South - 2020 1026			002											Y			
	1=12			1			1	5		-		1								
										(-)						K	n			
												1						_		
				/																
														100			11			
														01						
	/										170	23								
- 2	/	1																		
Date: 10-26-20	Time: \330	Relinquish	ed by: Non Mr- ed by:	Received by	Xia: CDO	Date Time 10(26(20 13-36	Ren	nark	S:											
Date:	Time:	Relinquish	ed by:	Received by: (Via:	Date Time														

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

November 04, 2020

Patrick Chavez

AMAFCA 2600 Prospect Ave NE Albuquerque, NM 87107 TEL: (505) 884-2215 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

October 26, 2020 - Rio Grande North BOD Lab Results Prior to Storm

RE: CMC

OrderNo.: 2010C13

Dear Patrick Chavez:

Hall Environmental Analysis Laboratory received 1 sample(s) on 10/27/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Field Parameters <u>Rio Grande North</u>-Temp = 5.94 °C pH = 8.49 Conductivity (uS/cm=umho/cm) = 385 Dissolved Oxygen (mg/L) = 10.08

Analytical Report							
Lab Order 2010C13							
Date Reported: 11/4/2020							

Hall Environmental Anal	lysis Laboratory, Inc.	•	Date Reported: 11/4/2020								
CLIENT: AMAFCA		Clien	Client Sample ID: RG-North-20201026								
Project: CMC	Col	Collection Date: 10/26/2020 10:50:00 AM									
Lab ID: 2010C13-001	Matrix: AQUEOUS	R	eceived Dat	e: 10/	/27/2020 3:29:00 PM						
Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch					
SM5210B: BOD Biochemical Oxygen Demand	ND	2.0	mg/L	1	Analys 11/2/2020 12:50:00 PM	-					

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 2

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

AMAFCA

WO#: 2010C13 04-Nov-20

Project: CMC Sample ID: MB-56071 SampType: MBLK TestCode: SM5210B: BOD Client ID: PBW Batch ID: 56071 RunNo: 73077 Prep Date: 10/28/2020 Analysis Date: 11/2/2020 SeqNo: 2569461 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual **Biochemical Oxygen Demand** ND 2.0 Sample ID: LCS-56071 TestCode: SM5210B: BOD SampType: LCS Client ID: LCSW Batch ID: 56071 RunNo: 73077 Prep Date: 10/28/2020 Analysis Date: 11/2/2020 SeqNo: 2569462 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual **Biochemical Oxygen Demand** 124 2.0 198.0 0 62.6 84.6 115.4 S

Qualifiers:

Client:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 2

ENVIRONMENTAL ANALYSIS LABORATORY TEL:		01 Hawkins N que, NM 871(505-345-41(7E 79 Sai	mple Log-In Check List
Client Name: AMAFCA Work C	Order Number: 201	0C13		RcptNo: 1
Received By: Cheyenne Cason 10/27/20;	20 3:29:00 PM			
Completed By:Cheyenne Cason10/27/202Reviewed By:ENM10/27/202	20 3:46:33 PM			
Chain of Custody				
1. Is Chain of Custody complete?	Yes	\checkmark	No 🗌	Not Present
2. How was the sample delivered?	Clie	nt		
<u>Log In</u>				
3. Was an attempt made to cool the samples?	Yes	\checkmark	No 🗌	NA 🗌
4. Were all samples received at a temperature of >0° C to	6.0°C Yes		No 🗌	
5. Sample(s) in proper container(s)?	Yes		No 🗌	
6. Sufficient sample volume for indicated test(s)?	Yes	V	No 🗌	
7. Are samples (except VOA and ONG) properly preserved	? Yes	\checkmark	No 🗌	
8. Was preservative added to bottles?	Yes		No 🔽	NA 🗌
9. Received at least 1 vial with headspace <1/4" for AQ VC	A? Yes		No 🗌	
10. Were any sample containers received broken?	Yes		No 🗹	# of preserved bottles checked
 Does paperwork match bottle labels? (Note discrepancies on chain of custody) 	Yes		No 🗌	for pH: (<2 or >12 unless noted)
2. Are matrices correctly identified on Chain of Custody?	Yes		No 🗌	Adjusted?
3. Is it clear what analyses were requested?	Yes		No 🗌	
14. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes		No 🗌	Checked by: CMC 10/27/c
Special Handling (if applicable)				
15. Was client notified of all discrepancies with this order?	Yes		No 🗌	NA 🔽
Person Notified:	Date:			
By Whom:	Via: 🗌 eM	ail 🗌 Pho	ne 🗌 Fax	In Person
Regarding:				
Client Instructions:				
16. Additional remarks:				
Cooler Information Cooler No Temp °C Condition Seal Intact 1 2.1 Good	Seal No Seal D	ate Si	gned By	

Client: AMAFCA Mailing Address: 2600 Prospectane Phone #:	Turn-Around Time: X Standard □ Rush Project Name: CMC Project #:	HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107									
email or Fax#: QA/QC Package: Standard Level 4 (Full Validation Accreditation NELAP Other EDD (Type) Date Time Matrix Sample Request ID VALAD 10:50 Sv Pate Sv Accreditation Netrix Date Time Matrix Sample Request ID VALAD 10:50 Sv Action Netrix Action Netrix	Sampler: E Bestion On Ice: Øl Yes INo Sample Temperature: 2.1+0 > 2.1 Container Preservative Type HEAL No. 7010013	Aualysis Bedinest BTEX + MTBE + TMB's (8021) BTEX + MTBE + TPH (Gas only) TPH 8015B (GRO / DRO / MRO) TPH 8015B (GRO / DRO / DRO / MRO) TPH 8015B (GRO / OR) TPH 8015B (GRO / OR) TPH 8015B (GRO / DRO / MRO) TPH 8015B (GRO / OR) TPH 8015B (GRO /									
Date: Time: Relinquished by: 17/20 15:24 Huller Date: Time: Relinquished by:	Received by: Date Time M ODO 10/22/00 1820 Received by: Date Time	Remarks:									

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

March 12, 2021

Patrick Chavez AMAFCA 2600 Prospect Ave NE Albuquerque, NM 87107 TEL: (505) 884-2215 FAX: October 26, 2020 - Rio Grande North Lab Results Prior to Storm; October 28, 2020 Rio Grande at Alameda Blvd. E. Coli Result; and October 28, 2020 Rio Grande South Results

RE: CMC

OrderNo.: 2010C61

Dear Patrick Chavez:

Hall Environmental Analysis Laboratory received 6 sample(s) on 10/28/2020 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 N	MED-DWB Cert #NM9425 NMED-Micro Cert #NM0901 Field Parameters
Sincerely,	$\frac{\text{Rio Grande North (10/26/2020)}}{\text{Temp} = 5.94 ^{\circ}\text{C}}$
andy	pH = 8.49 Conductivity (uS/cm=umho/cm) = 385 Dissolved Oxygen (mg/L) = 10.08
Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109	Rio Grande at Alameda Blvd. $(10/28/2020)$ - Temp = 6.94 °C pH = 7.24 Conductivity (uS/cm=umho/cm) = 437 Dissolved Oxygen (mg/L) = 12.52 Rio Grande South (10/28/2020)-
	Temp = $12.06 ^{\circ}\text{C}$ pH = 8.11 Conductivity (uS/cm=umho/cm) = 589 Dissolved Oxygen (mg/L) = 8.81

Analytical Report

Lab Order 2010C61

Date Reported: 3/12/2021

CLIENT: AMAFCA Project: CMC			Coll	ection 1	Date: 10/2	26/20	h-20201026 20 10:50:00 AM	
Lab ID: 2010C61-001	Matrix:	AQUEOUS	S Ree	ceived l	Date: 10/2	28/20	20 3:16:00 PM	
Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed B	atch ID
EPA METHOD 8081: PESTICIDES							Analyst: JME	
Dieldrin	ND	0.076	0.10	H	µg/L	1	11/4/2020 12:27:31 PM	56166
Surr: Decachlorobiphenyl	84.6	0	38.2-102	Н	%Rec	1	11/4/2020 12:27:31 PM	
Surr: Tetrachloro-m-xylene	75.7	0	32.3-92.4	Н	%Rec	1	11/4/2020 12:27:31 PM	56166
EPA METHOD 300.0: ANIONS							Analyst: JMT	
Nitrate+Nitrite as N	0.34	0.061	1.0	J	mg/L	5	11/9/2020 10:04:07 PM	R73232
EPA METHOD 200.7: METALS							Analyst: pmf	
Calcium	47	0.11	1.0		mg/L	1	11/2/2020 8:32:54 AM	56135
Magnesium	8.3	0.067	1.0		mg/L	1	11/2/2020 8:32:54 AM	56135
EPA 200.8: DISSOLVED METALS							Analyst: ELS	
Copper	0.00062	0.00013	0.0010	J	mg/L	1	10/29/2020 4:37:44 PM	A73027
Lead	ND	0.000034	0.00050		mg/L	1	10/29/2020 4:37:44 PM	A73027
SM2340B: HARDNESS							Analyst: pmf	
Hardness (As CaCO3)	150	2.5	6.6		mg/L	1	11/2/2020	R73075
EPA METHOD 1664B							Analyst: KMN	
N-Hexane Extractable Material	ND	3.92	9.71		mg/L	1	11/4/2020 8:56:00 AM	56126
SM 4500 NH3: AMMONIA							Analyst: CJS	
Nitrogen, Ammonia	ND	0.36	1.0		mg/L	1	11/6/2020 1:59:00 PM	R73186
SM4500-H+B / 9040C: PH							Analyst: MH	
рН	8.15			Н	pH units	1	10/30/2020 3:15:16 PM	R73062
EPA METHOD 365.1: TOTAL PHOSPHOR	ous						Analyst: CJS	
Phosphorus, Total (As P)	ND	0.050	0.050	D	mg/L	1	11/5/2020 11:59:00 AM	56210
SM2540C MOD: TOTAL DISSOLVED SOL	IDS						Analyst: MH	
Total Dissolved Solids	234	20.0	20.0		mg/L	1	10/30/2020 3:00:00 PM	56113
SM 4500 NORG C: TKN							Analyst: OG	
Nitrogen, Kjeldahl, Total	ND	0.23	1.0		mg/L	1	11/6/2020 1:36:00 PM	56235
SM 2540D: TSS							Analyst: KS	
Suspended Solids	18	4.0	4.0	н	mg/L	1	11/3/2020 12:11:00 PM	56151
					J			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Qualifiers:

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

Hall Environmental Analysis Laboratory, Inc.

В Analyte detected in the associated Method Blank

Е Value above quantitation range

Analyte detected below quantitation limits J Sample pH Not In Range

Р RL Reporting Limit

Page 1 of 18

Analytical Report Lab Order 2010C61

Date Reported: 3/12/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: AMAFCA			Client	Sample ID: <mark>R(</mark>	G-Nort	h-20201026 (Diss))	
Project: CMC	Collection Date: 10/26/2020 10:50:00 AM							
Lab ID: 2010C61-002	Matrix: AQUEOUS Received Date: 10/28/2020 3:16:00 PM							
Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID	
EPA METHOD 365.1: TOTAL PHOSPH	OROUS					Analyst: CJS		
Phosphorus, Total (As P)	0.013	0.010	0.010	mg/L	1	11/5/2020 12:00:00 PM 56210		
dissolved phosphorous								

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- D Sample Diluted Due to Matrix
- н Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Value above quantitation range Е
- Analyte detected below quantitation limits J Sample pH Not In Range
- Р RL Reporting Limit

Analytical Report Lab Order 2010C61

Date Reported: 3/12/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: AMAFCA			Client	t Sampl	e ID: <mark>R(</mark>	G-Sout	th-20201028	
Project: CMC	Collection Date: 10/28/2020 2:10:00 PM							
Lab ID: 2010C61-003	Matrix: AQUEOUS Received Date: 10/28/2020 3:16:00 PM						020 3:16:00 PM	
Analyses	Result	MDL	, RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8081: PESTICIDES							Analyst: JM	E
Dieldrin	ND	0.076	0.10		µg/L	1	11/4/2020 12:54:03 P	M 56166
Surr: Decachlorobiphenyl	79.7	0	38.2-102		%Rec	1	11/4/2020 12:54:03 P	
Surr: Tetrachloro-m-xylene	77.4	0	32.3-92.4		%Rec	1	11/4/2020 12:54:03 P	M 56166
EPA METHOD 300.0: ANIONS							Analyst: CA	S
Nitrogen, Nitrite (As N)	ND	0.070	0.50		mg/L	5	10/29/2020 11:03:29	
Nitrogen, Nitrate (As N)	1.3	0.10	0.50		mg/L	5	10/29/2020 11:03:29	A R73035
EPA METHOD 200.7: METALS							Analyst: pm	f
Calcium	51	0.11	1.0		mg/L	1	11/2/2020 8:43:27 AN	1 56135
Magnesium	9.4	0.067	1.0		mg/L	1	11/2/2020 8:43:27 AN	1 56135
EPA 200.8: DISSOLVED METALS							Analyst: EL	S
Copper	0.00085	0.00013	0.0010	J	mg/L	1	10/29/2020 4:45:32 P	M A73027
Lead	0.000051	0.000034	0.00050	J	mg/L	1	10/29/2020 4:45:32 P	M A73027
SM2340B: HARDNESS							Analyst: pm	f
Hardness (As CaCO3)	160	2.5	6.6		mg/L	1	11/2/2020	R73075
EPA METHOD 1664B							Analyst: KM	Ν
N-Hexane Extractable Material	ND	3.85	9.53		mg/L	1	11/4/2020 8:56:00 AN	1 56126
SM5210B: BOD							Analyst: AG	
Biochemical Oxygen Demand	2.3	2.0	2.0	Н	mg/L	1	11/3/2020 12:04:00 P	M 56094
SM 9223B FECAL INDICATOR: E. COL					-		Analyst: KM	N
E. Coli	>2419.6	1.000	1.000		MPN/10	00 1	10/29/2020 5:15:00 P	
SM 4500 NH3: AMMONIA							Analyst: CJ	5
Nitrogen, Ammonia	ND	0.36	1.0		mg/L	1	11/6/2020 1:59:00 PM	
-		0.00	1.0		iiig/L	'		
SM4500-H+B / 9040C: PH	0.11				allusit	- 1	Analyst: MH 10/30/2020 3:19:32 P	
рН	8.11			Н	pH units	5 1		
EPA METHOD 365.1: TOTAL PHOSPH				_			Analyst: CJ	
Phosphorus, Total (As P)	0.63	0.050	0.050	D	mg/L	1	11/5/2020 12:06:00 P	
SM2540C MOD: TOTAL DISSOLVED S	OLIDS						Analyst: MH	
Total Dissolved Solids	348	20.0	20.0		mg/L	1	10/30/2020 3:00:00 P	M 56113
SM 4500 NORG C: TKN							Analyst: OG	
Nitrogen, Kjeldahl, Total	0.70	0.23	1.0	J	mg/L	1	11/6/2020 1:36:00 PN	1 56235
SM 2540D: TSS							Analyst: KS	
Suspended Solids	32	4.0	4.0		mg/L	1	11/3/2020 12:11:00 P	M 56151

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Qualifiers: Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

В Analyte detected in the associated Method Blank

Value above quantitation range Е Analyte detected below quantitation limits J

Sample pH Not In Range Р

RL Reporting Limit

Page 3 of 18

% Recovery outside of range due to dilution or matrix S

Analytical Report Lab Order 2010C61

Date Reported: 3/12/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: AMAFCA			Client	Sample ID: RO	<mark>G-Sout</mark>	h-20201028 (Diss)	
Project: CMC	Collection Date: 10/28/2020 2:10:00 PM						
Lab ID: 2010C61-004	Matrix: A	QUEOUS	Rec	eived Date: 10	/28/20	20 3:16:00 PM	
Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 365.1: TOTAL PHOSPH	IOROUS					Analyst: C.	JS
Phosphorus, Total (As P)	0.48	0.010	0.010	mg/L	1	11/5/2020 12:08:00	PM 56210
dissolved phosphorous							

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
 - н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Value above quantitation range Е
- Analyte detected below quantitation limits J Sample pH Not In Range
- Р RL Reporting Limit

Page 4 of 18

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2010C61
Date Reported: 3/12/2021

CLIENT:	AMAFCA	AFCA Client Sample ID: RG-Alameda-20201028							
Project:	CMC	Collection Date: 10/28/2020 12:05:00 PM							
Lab ID:	2010C61-005	Matrix: A(QUEOUS	Rec	eived Date: 10	/28/20	20 3:16:00 PM		
Analyses		Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID	
SM 9223E	FECAL INDICATOR: E.	COLI MPN					Analyst: KMN		
E. Coli		98.5	1.000	1.000 MPN/100 1 10/29/2020 5:15:00 PM 5609				PM 56090	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

В Analyte detected in the associated Method Blank

Е Value above quantitation range Analyte detected below quantitation limits

J Sample pH Not In Range

Р RL Reporting Limit

Page 5 of 18

Client:	Hall Environmental Analysis Lab	Work Order:	MAJ0864
Address:	4901 Hawkins NE Suite D	Project:	2010C61
	Albuquerque, NM 87109	Reported:	11/20/2020 11:28
Attn:	Andy Freeman		

Analytical Results Report

Sample Location: Lab/Sample Number: Date Received: Matrix:	2010C61-001A <mark>(RG-</mark> MAJ0864-01 10/30/20 11:33 Water	North-20201026) Collect Date: Collected By:	10/26/20 10:50				
Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Volatiles							
Tetrahydrofuran	ND	ug/L	1.00	11/2/20 16:25	TEC	EPA 8260C	

Analytical Results Report

(Continued)

Sample Location:	2010C61-001K <mark>(RG-N</mark>	lorth-20201026)	
Lab/Sample Number:	MAJ0864-02	Collect Date:	10/26/20 10:50
Date Received:	10/30/20 11:33	Collected By:	
Matrix:	Water		

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles							
Benzidine	ND	ug/L	0.500	11/14/20 0:42	MAH	EPA 8270D	
Benzo[a]anthracene	ND	ug/L	0.500	11/14/20 0:42	MAH	EPA 8270D	
Benzo[a]pyrene	ND	ug/L	0.500	11/14/20 0:42	MAH	EPA 8270D	
Benzo[b]fluoranthene	ND	ug/L	0.500	11/14/20 0:42	MAH	EPA 8270D	
Benzo[k]fluoranthene	ND	ug/L	0.500	11/14/20 0:42	MAH	EPA 8270D	
Chrysene	ND	ug/L	0.500	11/14/20 0:42	MAH	EPA 8270D	
Di (2-ethylhexyl) phthalate	ND	ug/L	0.500	11/14/20 0:42	MAH	EPA 8270D	
Dibenz(a,h)anthracene	ND	ug/L	0.500	11/14/20 0:42	MAH	EPA 8270D	
Dibenzofuran	ND	ug/L	0.500	11/14/20 0:42	MAH	EPA 8270D	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.500	11/14/20 0:42	MAH	EPA 8270D	
Pentachlorophenol	ND	ug/L	0.500	11/14/20 0:42	MAH	EPA 8270D	
Surrogate: 2,4,6-Tribromophenol	79.3%		41-132	11/14/20 0:42	МАН	EPA 8270D	
Surrogate: 2-Fluorobiphenyl	72.7%		52-119	11/14/20 0:42	МАН	EPA 8270D	
Surrogate: 2-Fluorophenol	77.6%		41-127	11/14/20 0:42	MAH	EPA 8270D	
Surrogate: Nitrobenzene-d5	78.5%		52-120	11/14/20 0:42	МАН	EPA 8270D	
Surrogate: Phenol-2,3,4,5,6-d5	82.4%		51-115	11/14/20 0:42	МАН	EPA 8270D	
Surrogate: Terphenyl-d14	75.8%		25-135	11/14/20 0:42	МАН	EPA 8270D	

Analytical Results Report

(Continued)

Sample Location: Lab/Sample Number: Date Received:	2010C61-003A (<mark>RG-</mark> MAJ0864-03 10/30/20 11:33	-South-20201028) Collect Date: Collected By:	10/28/20 14:10				
Matrix:	Water	Collected by.					
Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Volatiles							
Tetrahydrofuran	ND	ug/L	1.00	11/2/20 16:55	TEC	EPA 8260C	

Analytical Results Report

(Continued)

Sample Location:	2010C61-003M (<mark>RG-5</mark>		
Lab/Sample Number:	MAJ0864-04	Collect Date:	10/28/20 14:10
Date Received:	10/30/20 11:33	Collected By:	
Matrix:	Water		

Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier
Semivolatiles							
Benzidine	ND	ug/L	0.500	11/14/20 4:49	MAH	EPA 8270D	
Benzo[a]anthracene	ND	ug/L	0.500	11/14/20 4:49	MAH	EPA 8270D	
Benzo[a]pyrene	ND	ug/L	0.500	11/14/20 4:49	MAH	EPA 8270D	
Benzo[b]fluoranthene	ND	ug/L	0.500	11/14/20 4:49	MAH	EPA 8270D	
Benzo[k]fluoranthene	ND	ug/L	0.500	11/14/20 4:49	MAH	EPA 8270D	
Chrysene	ND	ug/L	0.500	11/14/20 4:49	MAH	EPA 8270D	
Di (2-ethylhexyl) phthalate	ND	ug/L	0.500	11/14/20 4:49	MAH	EPA 8270D	
Dibenz(a,h)anthracene	ND	ug/L	0.500	11/14/20 4:49	MAH	EPA 8270D	
Dibenzofuran	ND	ug/L	0.500	11/14/20 4:49	MAH	EPA 8270D	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.500	11/14/20 4:49	MAH	EPA 8270D	
Pentachlorophenol	ND	ug/L	0.500	11/14/20 4:49	MAH	EPA 8270D	
Surrogate: 2,4,6-Tribromophenol	86.7%		41-132	11/14/20 4:49	MAH	EPA 8270D	
Surrogate: 2-Fluorobiphenyl	77.8%		52-119	11/14/20 4:49	МАН	EPA 8270D	
Surrogate: 2-Fluorophenol	74.5%		41-127	11/14/20 4:49	МАН	EPA 8270D	
Surrogate: Nitrobenzene-d5	77.3%		52-120	11/14/20 4:49	МАН	EPA 8270D	
Surrogate: Phenol-2,3,4,5,6-d5	79.0%		51-115	11/14/20 4:49	МАН	EPA 8270D	
Surrogate: Terphenyl-d14	70.9%		25-135	11/14/20 4:49	МАН	EPA 8270D	

Anatek Labs, Inc.

1282 Alturas Drive - Moscow, ID 83843 - (208) 883-2839 - Fax (208) 8829246 - email moscow@anateklabs.com 504 E Sprague Ste. D - Spokane, WA 99202 - (509) 838-3999 - fax (509) 838-4433 - email spokane@anateklabs.com

Analytical Results Report (Continued)									
Sample Location: Lab/Sample Number:	2010C61-006A (Trip MAJ0864-05	Blank) Collect Date:	10/28/20 14:10						
Date Received:	10/30/20 11:33	Collected By:							
Matrix:	Water								
Analyte	Result	Units	PQL	Analyzed	Analyst	Method	Qualifier		
Volatiles									
Tetrahydrofuran	ND	ug/L	0.500	11/2/20 17:24	TEC	EPA 8260C			

Authorized Signature,

Justin Doty For Todd Taruscio, Laboratory Manager

PQL Practical Quantitation Limit

ND Not Detected

MCL EPA's Maximum Contaminant Level

Dry Sample results reported on a dry weight basis

This report shall not be reproduced except in full, without the written approval of the laboratory The results reported related only to the samples indicated.

Quality Control Data

Semivolatiles

Analyte	Result	Oual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
, indive	resure	Quui	Linic	01110	Level	nesur	June	Linits		Linic
Batch: BAK0012 - SVOC Water										
Blank (BAK0012-BLK1)				Pre	epared: 11/2/	2020 Analyzed	d: 11/13/202	0		
Dibenzofuran	ND		0.500	ug/L						
Pentachlorophenol	ND		0.500	ug/L						
Indeno[1,2,3-cd]pyrene	ND		0.500	ug/L						
Dibenz[a,h]anthracene	ND		0.500	ug/L						
Chrysene	ND		0.500	ug/L						
bis(2-Ethylhexyl)phthalate	ND		0.500	ug/L						
Benzo[k]fluoranthene	ND		0.500	ug/L						
Benzidine	ND		0.500	ug/L						
Benzo[a]anthracene	ND		0.500	ug/L						
Benzo[a]pyrene	ND		0.500	ug/L						
Benzo[b]fluoranthene	ND		0.500	ug/L						
Surrogate: Phenol-2,3,4,5,6-d5			41.4	ug/L	49.5		83.7	51-115		
Surrogate: Nitrobenzene-d5			20.7	ug/L	25.0		82.6	52-120		
Surrogate: Terphenyl-d14			31.4	ug/L	25.5		123	25-135		
Surrogate: 2-Fluorophenol			38.7	ug/L	50.0		77.4	41-127		
Surrogate: 2-Fluorobiphenyl			19.4	ug/L	25.5		76.3	52-119		
Surrogate: 2,4,6-Tribromophenol			38.9	ug/L	51.2		75.8	41-132		
LCS (BAK0012-BS1)				Pre	epared: 11/2/	2020 Analyzed	1: 11/13/202	0		
Chrysene	4.24		0.500	ug/L	5.00	2020 /	84.8	50-130		
Dibenz[a,h]anthracene	3.61		0.500	ug/L	5.00		72.2	50-130		
Benzo[a]anthracene	4.13		0.500	ug/L	5.00		82.6	50-130		
Benzo[a]pyrene	3.87		0.500	ug/L	5.00		77.4	50-130		
Benzo[b]fluoranthene	4.59		0.500	ug/L	5.00		91.8	50-130		
Benzo[k]fluoranthene	4.48		0.500	ug/L	5.00		89.6	50-130		
bis(2-Ethylhexyl)phthalate	3.99		0.500	ug/L	5.00		79.8	50-130		
Dibenzofuran	4.29		0.500	ug/L	5.00		85.8	50-130		
Indeno[1,2,3-cd]pyrene	3.77		0.500	ug/L	5.00		75.4	50-130		
Pentachlorophenol	3.55		0.500	ug/L	5.00		71.0	50-130		
Surrogate: Phenol-2,3,4,5,6-d5			44.4	ug/L	49.5		89.7	51-115		
Surrogate: Nitrobenzene-d5			21.9	ug/L ug/L	25.0		87.6	52-120		
Surrogate: Terphenyl-d14			23.0	ug/L ug/L	25.0 25.5		90.4	25-135		
Surrogate: 2-Fluorophenol			23.0 42.8	ug/L ug/L	23.5 50.0		90.4 85.6	23-133 41-127		
Surrogate: 2-Fluorobiphenol			42.8 21.5	ug/L ug/L	25.5		85.0 84.2	41-127 52-119		
Surrogate: 2,4,6-Tribromophenol			21.3 41.9	ug/L ug/L	23.5 51.2		81.8	<i>32-119</i> <i>41-132</i>		

Quality Control Data

(Continued)

Semivolatiles (Continued)

Analyte	Result Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: BAK0012 - SVOC Water	r (Continued)								
LCS Dup (BAK0012-BSD1)	-		Pre	pared: 11/2/.	2020 Analyzed	1: 11/13/202	0		
Dibenz[a,h]anthracene	2.98	0.500	ug/L	5.00		59.6	50-130	19.1	25
Dibenzofuran	4.20	0.500	ug/L	5.00		84.0	50-130	2.12	25
Indeno[1,2,3-cd]pyrene	3.63	0.500	ug/L	5.00		72.6	50-130	3.78	25
Chrysene	4.28	0.500	ug/L	5.00		85.6	50-130	0.939	25
Benzo[a]pyrene	3.77	0.500	ug/L	5.00		75.4	50-130	2.62	25
Pentachlorophenol	3.47	0.500	ug/L	5.00		69.4	50-130	2.28	25
bis(2-Ethylhexyl)phthalate	3.78	0.500	ug/L	5.00		75.6	50-130	5.41	25
Benzo[b]fluoranthene	4.18	0.500	ug/L	5.00		83.6	50-130	9.35	25
Benzo[a]anthracene	4.32	0.500	ug/L	5.00		86.4	50-130	4.50	25
Benzo[k]fluoranthene	4.39	0.500	ug/L	5.00		87.8	50-130	2.03	25
Surrogate: Phenol-2,3,4,5,6-d5		44.2	ug/L	49.5		89.3	51-115		
Surrogate: Nitrobenzene-d5		21.4	ug/L	25.0		85.7	52-120		
Surrogate: Terphenyl-d14		23.4	ug/L	25.5		91.7	25-135		
Surrogate: 2-Fluorophenol		42.0	ug/L	50.0		84.1	41-127		
Surrogate: 2-Fluorobiphenyl		21.6	ug/L	25.5		84.7	52-119		
Surrogate: 2,4,6-Tribromophenol		43.6	ug/L	51.2		85.1	41-132		

Quality Control Data

(Continued)

Volatiles

		Reporting		Spike	Source		%REC		RPD
Analyte	Result Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: BAK0042 - VOC									
Blank (BAK0042-BLK1)	Prepared & Analyzed: 11/2/2020								
Tetrahydrofuran	ND	0.500	ug/L						
LCS (BAK0042-BS1)		Prepared & Analyzed: 11/2/2020							
Tetrahydrofuran	18.8	0.500	ug/L	22.7		82.6	80-120		
Matrix Spike (BAK0042-MS1)	Source: M	AJ0864-01		Prepared & Analyzed: 11/2/2020					
Tetrahydrofuran	21.6	0.500	ug/L	22.7	ND	95.0	70-130		
Matrix Spike Dup (BAK0042-MSD1)	Source: MAJ0864-01			Prepared 8	Analyzed: 1	L/2/2020			
Tetrahydrofuran	22.1	0.500	ug/L	22.7	ND	97.4	70-130	2.52	25

CHAIN OF CUSTODY RECORD PAGE: 1 OF: 1

Hall Environ

Website: clier.

SUB CONTR	ATOR Anatek I	D	COMPANY	Anatek	Labs, Inc.		PHONE.	(208) 883-283	9	FAX	(208) 882-9246
ADDRESS.	1282 Alt	uras Dr					ACCOUNT #:			EMAIL.	
CITY, STATE	Moscow,	ID 83843									
ITEM	SAMPLE	CLIENT SAM	PLE ID		BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINERS	ANAL	.YTICA	L COMMENTS
1 201	LOC61-001A RG	G-North-2020102	26	Ø	VOAHCL	Aqueous	10/26/2020 10:50:00 AN	1 3 8260: Tetrahyd	rofuran		
2 201	10C61-001K RG	G-North-2020102	26	4	1LAMGU	Aqueous	10/26/2020 10:50:00 AN	1 2,8270 See attack	ned list		
3 201	10C61-003A RG	G-South-2020102	28	1	VOAHCL	Aqueous	10/28/2020 2:10:00 PM	3 8260: Tetrahyd	rofuran		
4 201	LOC61-003M RG	G-South-2020102	28	ø	1LAMGU	Aqueous	10/28/2020 2:10:00 PM	2/8270 See attack	ned list		
5 201	10C61-006A Tri	ip Blank		4	VOAHCL	Trip Blan		2 8260: Tetrahyd	rofuran Trip B	llank	

SPECIAL INSTRUCTIONS / COMMENTS:

2

HALL

LABORATORY

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you. Passicoro Relinquished By A Date: Time Received By Time (33 REPORT TRANSMITTAL DESIRED: 10/29/2020 12:04 PM HARDCOPY (extra cost) ONLINE FAX EMAIL. Relinquished By Date: Time Received By Date: Time FOR LAB USE ONLY Relinquished By: Date Date: Time: Received By Time: C Attempt to Cool ? Temp of samples Standard RUSH Next BD 2nd BD 3rd BD TAT: Comments: Page 8 of 11

Collaborative Monitoring Cooperative - Analyses List Attach to Chain of Custody

<u>Please refer to attached NPDES Permit No. NMR04A00 Appendix F. Methods and minimum qu</u> (MQL's) will be those approved under 40 CFR 136 and specified in the attached.

Hardness (Ca + Mg)	NA	Total	200.7	2.4
Lead	7439-92-1	Dissolved	200.8	0.09
Copper	7440-50-8	Dissolved	200.8	1.06
Ammonia + organic nitrogen	7664-41-7	Total	350.1	31.32
Total Kjehldal Nitrogen	17778-88-0	Total	351.2	58.78
Nitrate + Nitrite	14797-55-8	Total	353.2	10.17
Polychlorinated biphenyls (PCBs)	1336-36-3	Total	1668	0.014
Tetrahydrofuran (THF)	109-99-9	Total	8260C	7.9
bis(2-Ethylhexyl)phthalate	117-81-7	Total	8270D	0.2 -
Dibenzofuran	132-64-9	Total	8270D	0.2
Indeno(1,2,3-cd)pyrene	193-39-5	Total	8270D	0.2
Benzo(b)fluoranthene	205-99-2	Total	8270D	0.1 .
Benzo(k)fluoranthene	207-08-9	Total	8270D	0.1 -
Chrysene	218-01-9	Total	8270D	0.2
3enzo(a)pyrene	50-32-8	Total	8270D	0.3 -
Dibenzo(a,h)anthracene	53-70-3	Total	8270D	0.3 -
Benzo(a)anthracene	56-55-3	Total	8270D	0.2 -
Dieldrin	60-57-1	Total	8081	0.1
Pentachlorophenol	87-86-5	Total	8270D	0.2
Benzidine	92-87-5	Total	8270D	0.1 -
Shemical Oxygen Demand	E1641638 ²	Total	HACH	5100
Gross alpha (adjusted)	NA	Total	Method 900	0.1 pCi/L
Fotal Dissolved Solids	E1642222 ²	Total	SM 2540C	60.4
Total Suspended Solids	NA	Total	SM 2540D	-3450
Biological Oxygen Demand	-N/A	Total	Standard Methods	930
Dil and Grease		Total	1664A	5000
Ecoli			SM 9223B	
H-			SM 4500	
Phosphorus		Dissolved	365.1	100
Phosphorus		Total	365.1	100

ALCON PLACE SHE SA ÷ and the second . AT ALCOLUUS - ALCOLUUS SUBJECT - LA SAMA

🕲 নিজেৰে প্ৰথম প্ 977828 R-1977 V 1978 H-1981 i. L oran e o orangestatione

● 機能を設けるようない。ここのものないであるという、これであるい。

Carto or the Carto

● おおおお おおおおおお かんしゅ などの うちょう ひん かたる ひろう ひろう たい ひきょうし しゅうぼう しかくぼう しゅうぼん かいしゅ たいない たいの ひょうせい マーチ・マング 御御 御御

HELVER BRO ないななななななななないできょうかいできょうないないであると とうない 山田市 かなかな ひのままい あいとせんかいし にためにもある。 おおめ おおんかい ビビラ しだけ 一方式 がない たいかみ ひかい おお たい たいかわれい いたい たいかい しょうかい いたい ひょうかい ۵

9 7 وليساج المروروفين الارجام الرابيان ال or the source of the second - そうごうないのでは、それには、それに、それで、それで、このではない。これには、これには、これには、それには、それには、それにはないです。 それに、それで、ここと、こので、こので、こので、こので、この、 2 1.11 in out a

and the state of the state of the state of the state · · · · · · · · · · ÷ 2. N. 1

「「「「「「「「」」」」

and the last of the

●目前がいたたちがおりたいがないがないがないが、ないないでいた。それないでいたのではないのですが、ないたいできたがあったが、ここに、これになっていた。ここのできたいです。ここで、いたが、いたいないので

中でには主要ないというです。これの言語がないでは

🔒 straden stand en Slove

😵 artsa karan arang 🖓

Gentlement - the filler

. .

and a set of constants

1730 Ø

Page 10 of 11

Anatek Labs, Inc.	Sample Rece	ipt and Pres	ervation Forr	n	MAJ0864 Due: 11/13/20
Client Name: HALL	Project:		(apply Anate	k sample labe	el here)
TAT: Normal RUSH: d	lavs				
\bigcirc	JPS USPS	Client Co	ourier Other:		
Custody Seal on Cooler/Box: Yes	No Cu	stody Seals	Intact: Yes	No N/A	A
Number of Coolers/Boxes:	Ту	pe of Ice: I	cellce Packs	Blue Ice	Dry Ice None
Packing Material: Bubble Wrap B	ags Foam/Pe	anuts No	ne Other:		
Cooler Temp As Read (°C): 0.1	Cooler Temp (Corrected (°C	т). — т	hermometer	IsadIR-5
Cooler Temp As Read (C),		Jonecled (C	······································		
Samples Reseived Intest?	Yes No	N/A	r	Comm	ents:
Samples Received Intact? Chain of Custody Present?	$\langle \rangle$	N/A N/A			
	\sim	N/A N/A			
Samples Received Within Hold Time?	No.		-		
Samples Properly Preserved?	Yes No	N/A			
VOC Vials Free of Headspace (<6mm)?	Yes No	N/A	-		
VOC Trip Blanks Present?	(Yes No	N/A			
Labels and Chains Agree?	(Yes) No	N/A			
Total Number of Sample Bottles Receiv	red:	ED)			
Chain of Custody Fully Completed?	Yes No	N/A	r		
Correct Containers Received?	Yes No	N/A			
Anatek Bottles Used?	Yes No	Unknown			
Analek Dollies Used?	res (No	UTKITOWIT	,L		
Record preservatives (and lot numbers,	if known) for con	tainers belov	v:		
HC1-7 VUC 8260 -7 24	4n1 X6+21	73			
Notes, comments, etc. (also use this sp	nace if contacting	the client - r	ecord names a	and date/time)	
8270 - slowman X.Z	save in contracting				

Received/Inspected By:

Date/Time: 10/30/2020 1133

Form F18.00 - Eff 8 Feb 2019

Page 1 of 1

Page 11 of 11

ANALYTICAL REPORT

L1279622

10/30/2020

November 06, 2020

Hall Environmental Analysis Laboratory

Sample Delivery Group:

Samples Received:

Project Number:

Description:

Report To:

Jackie Bolte 4901 Hawkins NE Albuquerque, NM 87109

Тс Ss Cn Sr ʹQc Gl A Sc

Entire Report Reviewed By: John V Haulins

John Hawkins Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

PROJECT:

SDG: L1279622

DATE/TIME: 11/06/20 09:02

TABLE OF CONTENTS

*	
	<u>с</u>

Ss

Cn

Sr

Qc

GI

ΆI

Sc

1
2
3
4
5
5
6
7
7
8
9
10
11

ACCOUNT:

Hall Environmental Analysis Laboratory

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Ċn

Sr

Qc

GI

ΆI

Sc

			Collected by	Collected date/time	Received dat	te/time
2010C61-001H/J RG-NORTH-20201026 L12796	22-01 WW			10/26/20 10:50	10/30/20 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 3500Cr C-2011	WG1569603	1	11/03/20 18:51	11/03/20 18:51	GB	Mt. Juliet, TN
Wet Chemistry by Method 410.4	WG1571427	1	11/05/20 09:37	11/05/20 17:13	LRP	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
2010C61-003H/J RG-SOUTH-20201028 L12796	622-02 WW			10/28/20 14:10	10/30/20 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 3500Cr C-2011	WG1569603	1	11/03/20 18:58	11/03/20 18:58	GB	Mt. Juliet, TN

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

John V Hankins

John Hawkins Project Manager

SDG: L1279622 DATE/TIME: 11/06/20 09:02

PAGE: 4 of 11

SAMPLE RESULTS - 01

*

Qc

Gl

Â

Sc

Wet Chemistry by Method 3500Cr C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		2
Hexavalent Chromium	ND		0.000500	1	11/03/2020 18:51	<u>WG1569603</u>	T
Wet Chemistry by N	Nethod 410.4						3

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		⁴ Cn
COD	ND		20.0	1	11/05/2020 17:13	WG1571427	CII

SAMPLE RESULTS - 02

*

Qc

Gl

Â

Sc

Wet Chemistry by Method 3500Cr C-2011

wet enemistry by h							1 C $-$
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l		date / time		2
Hexavalent Chromium	ND		0.000500	1	11/03/2020 18:58	WG1569603	Tc
Wet Chemistry by N	Method 410.4						³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		⁴ Cn
COD	ND		20.0	1	11/05/2020 17:13	WG1571427	

WG1569603

Wet Chemistry by Method 3500Cr C-2011

QUALITY CONTROL SUMMARY L1279622-01,02

Тс

Ss

Cn

Sr

[°]Qc

Method Blank (MB)

(MB) R3589278-1 11/03/	20 16:42			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Hexavalent Chromium	U		0.000150	0.000500

L1277385-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1277385-01 11/03/2	0 17:36 • (DUP) /	R3589278-3 1	11/03/20 17	:44		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Hexavalent Chromium	ND	ND	1	0.000		20

L1280221-01 Original Sample (OS) • Duplicate (DUP)

L1280221-01 Orig	jinal Sample ((OS) • Dup	olicate (l	DUP)		
(OS) L1280221-01 11/03	/20 20:56 • (DUP)	R3589278-7	11/03/20 2	21:04		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Hexavalent Chromium	ND	ND	1	0.909		20

Laboratory Control Sample (LCS)

(LCS) R3589278-2 11/03/2	20 16:51				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Hexavalent Chromium	0.00200	0.00197	98.5	90.0-110	

L1279574-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1279574-01 11/03/20) 18:21 • (MS) R3	3589278-4 11/0)3/20 18:29				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Hexavalent Chromium	0.0500	0.000742	0.0501	98.7	1	90.0-110	

L1280214-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1280214-02 11/03	3/20 20:34 • (MS) I	R3589278-5 11	/03/20 20:41	• (MSD) R3589	278-6 11/03/	20 20:49							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Hexavalent Chromium	0.0500	0.160	0.199	0.200	78.8	79.8	1	90.0-110	<u>E J6</u>	<u>E J6</u>	0.252	20	
	ACCOUNT:			PRC	JECT:			SDG:		DATE	/TIME:		PAGE:
Hall Environ	mental Analysis Labo	oratory					L1	279622		11/06/20	0 09:02		7 of 11

WG1571427

Wet Chemistry by Method 410.4

QUALITY CONTROL SUMMARY L1279622-01,02

Ср

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3589914-1 11/0	05/20 17:10			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
COD	U		11.7	20.0

L1277374-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1277374-01 11/05/2	20 17:11 • (DUP) R	3589914-3 11/	/05/20 17:1	1		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
COD	357	372	1	4.13		20

L1279644-01 Original Sample (OS) • Duplicate (DUP)

L1279644-01 O	riginal Sample	(OS) • Dup	olicate (DUP)				⁷ Gl
(OS) L1279644-01 11/05/20 17:15 • (DUP) R3589914-6 11/05/20 17:15								
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		⁸ Al
Analyte	mg/l	mg/l		%		%		
COD	ND	ND	1	0.000		20		°Sc

Laboratory Control Sample (LCS)

(LCS) R3589914-2 11/05/2	CS) R3589914-2 11/05/20 17:10							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/l	mg/l	%	%				
COD	500	510	102	90.0-110				

L1279548-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1279548-01 11/05/20	OS) L1279548-01 11/05/20 17:12 • (MS) R3589914-4 11/05/20 17:12 • (MSD) R3589914-5 11/05/20 17:12											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
COD	500	ND	529	523	103	102	1	80.0-120			1.23	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Hall Environmental Analysis Laboratory		L1279622	11/06/20 09:02	8 of 11

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).

The sample matrix interfered with the ability to make any accurate determination; spike value is low.

J6

SDG: L1279622

ACCREDITATIONS & LOCATIONS

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebrask
Alaska	17-026	Nevada
Arizona	AZ0612	New Ha
Arkansas	88-0469	New Jer
California	2932	New Me
Colorado	TN00003	New Yo
Connecticut	PH-0197	North Ca
Florida	E87487	North Ca
Georgia	NELAP	North Ca
Georgia ¹	923	North Da
Idaho	TN00003	Ohio-V
Illinois	200008	Oklahon
Indiana	C-TN-01	Oregon
lowa	364	Pennsyl
Kansas	E-10277	Rhode Is
Kentucky ¹⁶	90010	South C
Kentucky ²	16	South D
Louisiana	AI30792	Tenness
Louisiana ¹	LA180010	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermon
Michigan	9958	Virginia
Minnesota	047-999-395	Washing
Mississippi	TN00003	West Vir
Missouri	340	Wiscons
Montana	CERT0086	Wyomin

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ^{1 4}	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Hall Environmental Analysis Laboratory

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

L1279622

DATE/TIME: 11/06/20 09:02

				CHAIN OF CLISTODY DECODE PAGE: OF: Sample Receipt Checklist COC-Seal Present/Intact: Y N If Applicable COC Signed/Accurate: Y N VOA Zero Headspace: Y N Battles arrive intact: Y N Pres.Correct/Check: Y N Correct bottles used: Y N Sufficient volume sent: Y N RAD Soreen <0.5 mR/hr: Y N						Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87100 D155 Website: clients.hatoumental.com
SUB CO	ONTRATOR Pace	TN	OMPANY	PACE	ΓN		PHONE	(800) 767-5859	FAX:	(615) 758-5859
ADDRE	LSS 12065	Lebanon Rd					ACCOUNT #.		EMAIL:	
CITY, S	STATE, ZIP Mt. J	uliet, TN 37122								61279622
ITEM	SAMPLE	CLIENT SAMPLE	ID		BOTTLE TYPE	MATRIX	COLLECTION DATE	# CONTAINERS	ANALYTIC	AL COMMENTS
1	2010C61-001H	RG-North-20201026				Aqueous	10/26/2020 10:50:00 AM	1 COD		-01 107
2	2010C61-001J	RG-North-20201026			120mL	Aqueous	10/26/2020 10:50:00 AM	1 Cr 6		- 01 - 02
3	2010C61-003H	RG-South-20201028		ø		Aqueous	10/28/2020 2:10:00 PM	1 COD		- 02 -03
4	2010C61-003J	RG-South-20201028		1	120mL	Aqueous	10/28/2020 2:10:00 PM	1 Cr 6		-92 -ot

SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LAB I	D and the CLIENT	SAMPLE ID o	n all final reports. Plea	se e-mail results to la	ab@hallenvironmental	.com. Please return all co	olers and blue ice. Thank you.		
	Date: 10/29/2020		/	Date D	Time	HARDCOPY (ex	REPORT TRANSMITTAL DESIRED: tra cost) FAX EMAIL	ONLINE	
Relinquished By: Relinquished By.	Date:	Time:	Received By Received By	Date	Time. 20 Time 20 Time 200	Temp of samples	FOR LAB USE ONLY 3.5-J-32 ²⁰ Attempt to Cool ?		OK
TAT:	Standard X	RUSH	Next BD	2nd BD	3rd BD	Comments.			
		,				COCSZ	RRAD SOREEN: <0.5 m	R/hr	

3306 Kitty Hawk Road, Suite 120 Wilmington, NC 28405 P 910.795.0421

www.capefearanalytical.com

an affiliate of The GEL Group INC

December 08, 2020

Mr. Andy Freeman Hall Environmental 4901 Hawkins NE Suite D Albuquerque, New Mexico 87109

Re: Routine Analysis Work Order: 17326 SDG: 2010C61

Dear Mr. Freeman:

Cape Fear Analytical LLC (CFA) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on October 30, 2020. This original data report has been prepared and reviewed in accordance with CFA's standard operating procedures.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at 910-795-0421.

Sincerely,

Cynde Larking

Cynde Larkins Project Manager

Purchase Order: IDIQ Pricing Enclosures

HALL ENVIRONMENTAL ANALYSIS LABORATORY	CHAIN OF CUSTODY I	RECORD PAGE: 1 OF: 1 UFA WOHT	Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com
SUB CONTRATOR: Cape Fear Analytical COMPANY:	Cape Fear Analytical	PHONE (910) 795-0	421 FAX:
ADDRESS: 3306 Kitty Hawk Rd Ste 120		ACCOUNT #;	EMAIL:
CITY, STATE, ZIP: Wilmington, NC 28405			·
ITEM SAMPLE CLIENT SAMPLE ID	BOTTLE TYPE MATRIX	COLLECTION ANNER DATE FR	ANALYTICAL COMMENTS
1 2010C61-001G RG-North-20201026	1LAMGU Aqueous	10/26/2020 10:50:00 AM 2 PCB Congene	rs 1668
2 2010C61-003G RG-South-20201028	1LAMGU Aqueous	10/28/2020 2:10:00 PM 2 PCB Congene	
			ENM 10129120

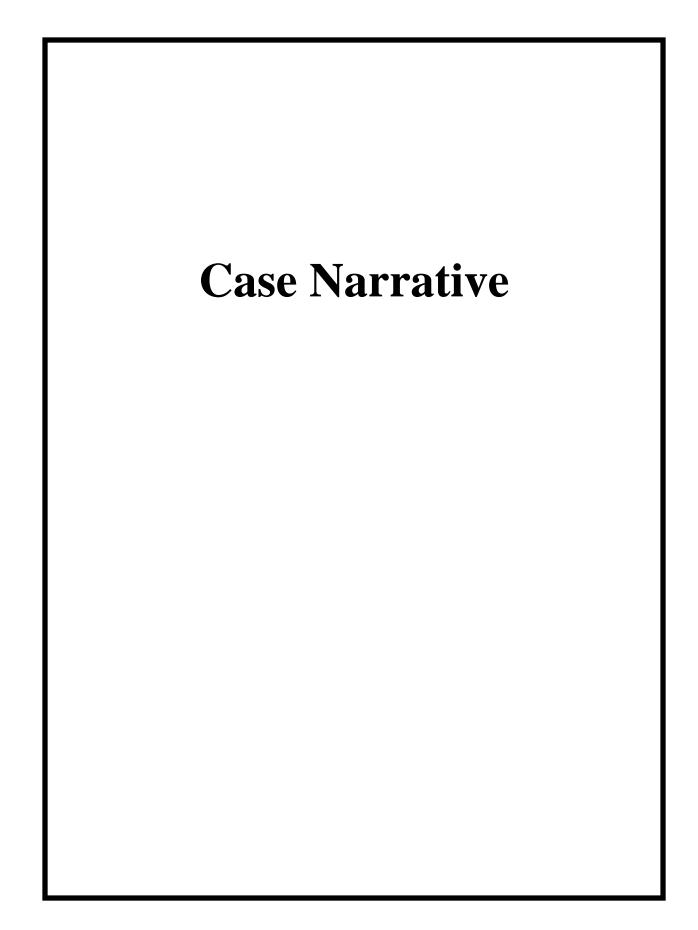
SPECIAL INSTRUCTIONS / COMMENTS:

Please include the LAB ID and the CLIENT SAMPLE ID on all final reports. Please e-mail results to lab@hallenvironmental.com. Please return all coolers and blue ice. Thank you.

Relinquished By	Date: 10/29/2020 Date:	Time: 9:26 AM Time:	Received By Lynde Received By:	Lonteriors	Date: 300CT2C Date:	Time: /000	REPORT TRANSMITTAL DESIRED: HARDCOPY (exita cost)
Relinquished By:	Date:	Time:	Received By:		Date:	Time:	FOR LAB USE ONLY Temp of samples 5.9 C Attempt to Cool ?
TAT: Stanc	ard A	RUSH	Next BD	2nd BD	3rd B		Comments:

_

SAMPLE RECEIPT CHECKLIST


Cape Fear Analytical

Cli	Client: HALL Work Order: 17326							
Shi	pping Company: FedEx				Date/Time Received: 300CT20 /000			
Suspected Hazard Information Shipped as DOT Hazardous? Samples identified as Foreign Soil?		Yes	NA	No V	DOE Site Sample PackagesYesNANo*Screened <0.5 mR/hr?			
Air Sample Receipt Specifics Yes NA No		No	* Notify RSO of any responses in this column immediately.					
Air	sample in shipment? Sample Receipt Criteria	Yes	NA	No	Air Witness: Comments/Qualifiers (required for Non-Conforming Items)			
1	Shipping containers received intact and sealed?		7		Circle Applicable: seals broken damaged container leaking container other(describe)			
2	Custody seal/s present on cooler?	1	1		Seal intact? Yes No			
3	Chain of Custody documents included with shipment?	~	/					
4	Samples requiring cold preservation within 0-6°C?	\checkmark	<u> </u>		Preservation Method: ice bags loose ice plue ice dry ice none other (describe) $5.9^{\circ} + 0.0 = 5.9^{\circ} ($			
5	Aqueous samples found to have visible solids?	\checkmark			ice bags loose ice plue icg dry ice none other (describe) 5.9° + 0.0 = 5.9° (Sample IDs, containers affected: Minimal Visible Solids (<(4(2))			
5	Samples requiring chemical preservation at proper pH?		/		Sample IDs, containers affected and pH observed: 9 11-914= 8 If preservative added, Lot#:			
7	Samples requiring preservation have no residual chlorine?	\checkmark			Sample IDs, containers affected: If preservative added, Lot#:			
8	Samples received within holding time?				Sample IDs, tests affected:			
9	Sample IDs on COC match IDs on containers?	/			Sample IDs, containers affected:			
10	Date & time of COC match date & time on containers?	V			Sample IDs, containers affected:			
11	Number of containers received match number indicated on COC?			~	List type and number of containers / Sample IDs, containers affected: I-IL WMAG bothe per sample , EOC lists 2.			
12	COC form is properly signed in relinquished/received sections?	\checkmark						
	comments: ge 3 of 46 Work Orechist 7926 med by: Initials: Date: 300 CT20 CF-UD-F-7							

SAMPLE RECEIPT CHECKLIST Cape Fear Analytical

Clie	Client: HALL Work Order: 17326							
Ship	ping Company: FedEx				Date/Time Received: 24NOV20 1136			
Suspected Hazard Information Shipped as DOT Hazardous? Samples identified as Foreign Soil?		Yes	NA	No V V	DOE Site Sample PackagesYesNANo*Screened <0.5 mR/hr?			
Air Sample Receipt Specifics Air sample in shipment?		Yes	NA	No	* Notify RSO of any responses in this column immediately. Air Witness:			
	Sample Receipt Criteria	Yes	NA	No	Comments/Qualifiers (required for Non-Conforming Items)			
111	Shipping containers received intact and sealed?	~			Circle Applicable: seals broken damaged container leaking container other(describe)			
2	Custody seal/s present on cooler?	\checkmark			Seal intact? Yes No			
1 3 1	Chain of Custody documents included with shipment?			\checkmark				
1 4 1	Samples requiring cold preservation within 0-6°C?	\checkmark			Preservation Method: ice bags blue ice) dry ice none other (describe) $5,3^{*} + 0.0 = 5,3^{\circ}$			
151	Aqueous samples found to have visible solids?	\checkmark		•	5,3° + 0.0=5,3°C Sample IDS, containers affected: Minimal Visible Adids (<10/0)			
151	Samples requiring chemical preservation at proper pH?		\checkmark	~	Sample IDs, containers affected and pH observed: PH = 7 If preservative added, Lot#:			
	Samples requiring preservation have no residual chlorine?	v	/		Sample IDs, containers affected: If preservative added, Lot#:			
8	Samples received within holding time?	\checkmark			Sample IDs, tests affected:			
1 4 1	Sample IDs on COC match IDs on containers?			\checkmark	Sample IDs, containers affected: Using original COC. Sample ID's end in "K"			
1101	Date & time of COC match date & time on containers?	$\overline{\mathbf{v}}$	/		Sample IDs, containers affected:			
1 1 1 1	Number of containers received match number indicated on COC?	V			List type and number of containers / Sample IDs, containers affected: 2 - I L WMAG bother			
1 1 / 1	COC form is properly signed in relinquished/received sections?	V			\checkmark			
Com	iments:	L		L				
Replacement samples for re-extract.								
L	Checklist performed by: Initials: Date: Date: CH_NOUZ-O CF-UD-F-7							

PCB Congeners Analysis

PCBC Case Narrative Hall Environmental Analysis Laboratory (HALL) SDG 2010C61 Work Order 17326

Method/Analysis Information

Product:PCB Congeners by EPA Method 1668A in LiquidsAnalytical Method:EPA Method 1668AExtraction Method:SW846 3520CAnalytical Batch Number:45453Clean Up Batch Number:45452Extraction Batch Number:45451

Sample Analysis

Samples were received at 5.3°C. (17326001,17326002). The following samples were analyzed using the analytical protocol as established in EPA Method 1668A:

Sample ID	Client ID
12028047	Method Blank (MB)
12028048	Laboratory Control Sample (LCS)
12028049	Laboratory Control Sample Duplicate (LCSD)
17326001	2010C61-001G RG-North-20201026
17326002	2010C61-003G RG-South-20201028

The samples in this SDG were analyzed on an "as received" basis.

SOP Reference

Procedure for preparation, analysis and reporting of analytical data are controlled by Cape Fear Analytical LLC (CFA) as Standard Operating Procedure (SOP). The data discussed in this narrative has been analyzed in accordance with CF-OA-E-003 REV# 7.

Raw data reports are processed and reviewed by the analyst using the TargetLynx software package.

Calibration Information

Initial Calibration

All initial calibration requirements have been met for this sample delivery group (SDG).

Continuing Calibration Verification (CCV) Requirements

All associated calibration verification standard(s) (ICV or CCV) met the acceptance criteria.

Quality Control (QC) Information

Certification Statement

The test results presented in this document are certified to meet all requirements of the 2009 TNI Standard.

Method Blank (MB) Statement The MB(s) analyzed with this SDG met the acceptance criteria.

Surrogate Recoveries

All surrogate recoveries were within the established acceptance criteria for this SDG.

Laboratory Control Sample (LCS) Recovery

The LCS spike recoveries met the acceptance limits.

Laboratory Control Sample Duplicate (LCSD) Recovery

The LCSD spike recoveries met the acceptance limits.

LCS/LCSD Relative Percent Difference (RPD) Statement

The RPD(s) between the LCS and LCSD met the acceptance limits.

QC Sample Designation

A matrix spike and matrix spike duplicate analysis was not required for this SDG.

Technical Information

Receipt Temperature Samples were received within temperature requirements.

Holding Time Specifications

CFA assigns holding times based on the associated methodology, which assigns the date and time from sample collection. Those holding times expressed in hours are calculated in the AlphaLIMS system. Those holding times expressed as days expire at midnight on the day of expiration. All samples in this SDG met the specified holding time.

Preparation/Analytical Method Verification

All procedures were performed as stated in the SOP.

Sample Dilutions

The samples in this SDG did not require dilutions.

Sample Re-extraction/Re-analysis

Samples were re-extracted due to laboratory contamination in the associated method blank. 17326001 (2010C61-001G RG-North-20201026) and 17326002 (2010C61-003G RG-South-20201028).

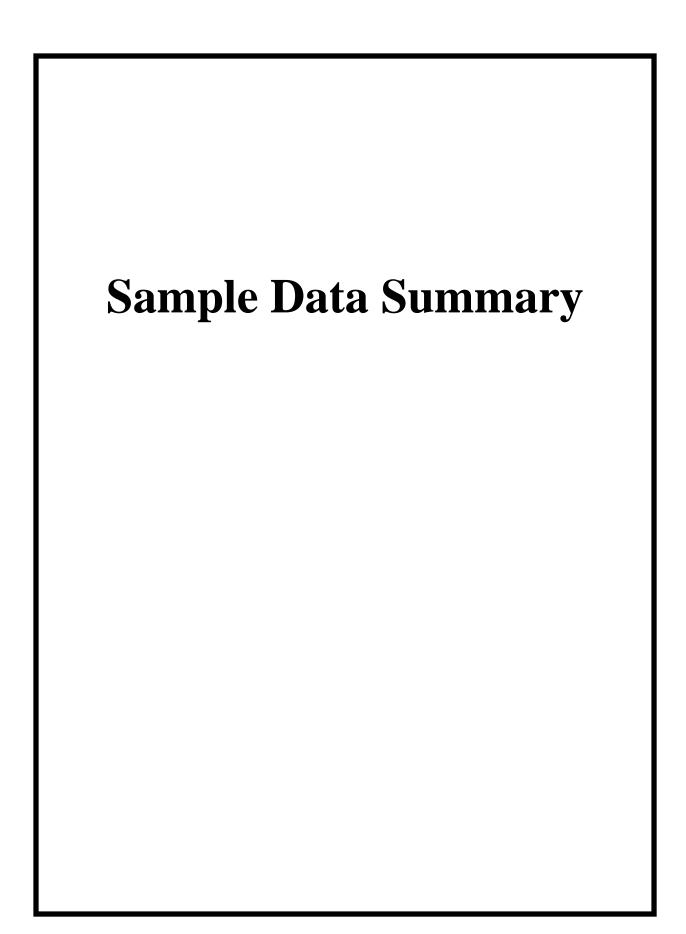
Miscellaneous Information

Nonconformance (NCR) Documentation

A NCR was not required for this SDG.

Manual Integrations

Manual integrations were required for data files in this SDG. Certain standards and QC samples required manual integrations to correctly position the baseline as set in the calibration standard injections. Where manual integrations were performed, copies of all manual integration peak profiles are included in the raw data section of this fraction.


System Configuration

This analysis was performed on the following instrument configuration:

Instrument ID	Instrument	System Configuration	Column ID	Column Description
HRP875_1	PCB Analysis	PCB Analysis	SPB-Octyl	30m x 0.25mm, 0.25um

Electronic Packaging Comment

This data package was generated using an electronic data processing program referred to as virtual packaging. In an effort to increase quality and efficiency, the laboratory has developed systems to generate all data packages electronically. The following change from traditional packages should be noted: Analyst/peer reviewer initials and dates are not present on the electronic data files. Presently, all initials and dates are present on the original raw data. These hard copies are temporarily stored in the laboratory. An electronic signature page inserted after the case narrative will include the data validator's signature and title. The signature page also includes the data qualifiers used in the fractional package. Data that are not generated electronically, such as hand written pages, will be scanned and inserted into the electronic package.

Cape Fear Analytical, LLC

3306 Kitty Hawk Road Suite 120, Wilmington, NC 28405 - (910) 795-0421 - www.capefearanalytical.com

Certificate of Analysis Report for

HALL001 Hall Environmental Analysis Laboratory

Client SDG: 2010C61 CFA Work Order: 17326

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a surrogate compound
- B The target analyte was detected in the associated blank.
- C Congener has coeluters. When Cxxx, refer to congener number xxx for data
- J Value is estimated
- U Analyte was analyzed for, but not detected above the specified detection limit.

Review/Validation

Cape Fear Analytical requires all analytical data to be verified by a qualified data reviewer.

The following data validator verified the information presented in this case narrative:

Signature: Supre

Name: Erin Suhrie

Date: 08 DEC 2020

Title: Data Validator

		Certific	Congeners ate of Analysis le Summary		Page 1 of 8		
SDG Number: Lab Sample ID: Client Sample:	2010C61 : 17326001 1668A Water	Client: Date Collected: Date Received:	HALL001 10/26/2020 10:50 11/24/2020 11:36		Project: Matrix:	HALL00113 WATER	
Client ID:	2010C61-001G RG-North-20201026				Prep Basis:	As Received	
Batch ID: Run Date: Data File:	45453 11/28/2020 00:12 d27nov20a_2-6	Method: Analyst:	EPA Method 1668A MJC		Instrument: Dilution:	HRP875 1 CF OA F 001	
Prep Batch: Prep Date:	45451 26-NOV-20	Prep Method: Prep Aliquot:	SW846 3520C 928.5 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
2051-60-7 1-2	MoCB	U	ND	pg/L	5.19	108	
2051-61-8 2-	MoCB	U	ND	pg/L	5.19	108	
2051-62-9 3-	MoCB	U	ND	pg/L	4.29	108	
13029-08-8 4-	DiCB	U	ND	pg/L	20.1	108	
16605-91-7 5-1	DiCB	U	ND	pg/L	11.4	108	
25569-80-6 6-1	DiCB	U	ND	pg/L	10.2	108	
33284-50-3 7-2	DiCB	U	ND	pg/L	8.85	108	
34883-43-7 8-1	DiCB	U	ND	pg/L	8.87	108	
34883-39-1 9-1	DiCB	U	ND	pg/L	12.3	108	
33146-45-1 10)-DiCB	U	ND	pg/L	9.80	108	
2050-67-1 11	I-DiCB	U	ND	pg/L	33.2	108	
	2-DiCB	CU	ND	pg/L	9.89	215	
	3-DiCB	C12					
	4-DiCB	U	ND	pg/L	10.9	108	
	5-DiCB	U	ND	pg/L	9.26	108	
	5-TrCB	U	ND	pg/L	3.83	108	
	7-TrCB	U	ND	pg/L	4.29	162	
	3-TrCB	CU	ND	pg/L	4.54	215	
	D-TrCB	U	ND	pg/L	5.39	108	
)-TrCB	BCJ	9.22	pg/L	2.89	215	
	I-TrCB	CU	ND	pg/L	5.67	215	
	2-TrCB	U	ND	pg/L	3.25	108	
	3-TrCB	U	ND	pg/L	2.80	108	
	4-TrCB	U U	ND	pg/L	3.14	108	
	5-TrCB 5-TrCB	CU	ND ND	pg/L	2.54 3.17	108 215	
	7-TrCB	U	ND	pg/L pg/L	3.34	108	
	3-TrCB	C20	nD	Pg/∟	5.54	100	
	P-TrCB	C20					
)-TrCB	C18					
	I-TrCB	BJ	7.69	pg/L	2.95	108	
	2-TrCB	U	ND	pg/L pg/L	2.93	108	
20111110 52		C	- 12	P5/12			

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

			Page 2	of 8			
SDG Number: Lab Sample ID: Client Sample:	2010C61 : 17326001 1668A Water	Client: Date Collected: Date Received:	Dle Summary HALL001 10/26/2020 10:50 11/24/2020 11:36		Project: Matrix:	HALL00113 WATER	
Client ID:	2010C61-001G RG-North-20201026				Prep Basis:	As Received	
Batch ID: Run Date: Data File:	45453 11/28/2020 00:12 d27nov20a_2-6	Method: Analyst:	EPA Method 1668A MJC		Instrument: Dilution:	HRP875 1	
Prep Batch: Prep Date:	45451 26-NOV-20	Prep Method: Prep Aliquot:	SW846 3520C 928.5 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
38444-86-9 33	3-TrCB	C21					
	4-TrCB	U	ND	pg/L	3.36	108	
	5-TrCB	U	ND	pg/L	3.04	108	
	5-TrCB	U	ND	pg/L	2.91	108	
	7-TrCB	U	ND	pg/L	2.93	108	
	3-TrCB	U	ND	pg/L	2.99	108	
	P-TrCB	U	ND	pg/L	2.48	108	
)-TeCB	CU	ND	pg/L	4.46	215	
	I-TeCB	U	ND	pg/L	6.20	162	
	2-TeCB	U	ND	pg/L	4.33	162	
	3-TeCB	U	ND	pg/L	4.35	108	
	4-TeCB	CU	ND	pg/L	12.3	323	
	5-TeCB 5-TeCB	CU U	ND ND	pg/L	2.74	215 108	
		C44	ND	pg/L	2.97	108	
	7-TeCB 3-TeCB	U	ND	ng/I	4.14	162	
	P-TeCB	CU	ND	pg/L pg/L	6.35	215	
)-TeCB	CU	ND	pg/L pg/L	2.61	215	
	I-TeCB	C45	ND	pg/L	2.01	215	
	2-TeCB	BJ	13.9	pg/L	4.82	215	
	3-TeCB	C50	15.7	P5/12	1.02	215	
	4-TeCB	U	ND	pg/L	2.15	108	
	5-TeCB	U	ND	pg/L	2.61	108	
	5-TeCB	BJ	3.86	pg/L	2.71	108	
	7-TeCB	U	ND	pg/L	2.86	108	
41464-49-7 58	3-TeCB	U	ND	pg/L	2.63	108	
	9-TeCB	CU	ND	pg/L	3.36	323	
)-TeCB	U	ND	pg/L	2.58	108	
33284-53-6 61	1-TeCB	BCJ	15.9	pg/L	2.58	431	
54230-22-7 62	2-TeCB	C59					
74472-34-7 63	3-TeCB	U	ND	pg/L	2.80	108	
52663-58-8 64	4-TeCB	U	ND	pg/L	4.24	108	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

			Page 3	of 8			
SDG Number: Lab Sample ID Client Sample:		Client: Date Collected: Date Received:	HALL001 10/26/2020 10:50 11/24/2020 11:36		Project: Matrix:	HALL00113 WATER	
Client ID:	2010C61-001G <mark>RG-North-20201026</mark>				Prep Basis:	As Received	
Batch ID: Run Date: Data File: Prep Batch:	45453 11/28/2020 00:12 d27nov20a_2-6 45451	Method: Analyst: Prep Method:	EPA Method 1668A MJC SW846 3520C		Instrument: Dilution: Prep SOP Ref:	HRP875 1 CF-OA-E-001	
Prep Date:	26-NOV-20	Prep Aliquot:	928.5 mL				
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
33284-54-7 6	5-TeCB	C44					
32598-10-0 6	6-TeCB	BJ	8.90	pg/L	2.93	215	
73575-53-8 6	7-TeCB	U	ND	pg/L	2.39	108	
73575-52-7 6	8-TeCB	U	ND	pg/L	2.30	108	
60233-24-1 6	9-TeCB	C49					
32598-11-1 7	0-TeCB	C61					
41464-46-4 7	11-TeCB	C40					
41464-42-0 72	2-TeCB	U	ND	pg/L	2.76	108	
74338-23-1 7	3-TeCB	U	ND	pg/L	3.36	108	
32690-93-0 74	4-TeCB	C61					
32598-12-2 7	5-TeCB	C59					
70362-48-0 7	6-TeCB	C61					
32598-13-3 7	7-TeCB	U	ND	pg/L	2.97	108	
70362-49-1 7	8-TeCB	U	ND	pg/L	3.21	108	
41464-48-6 7	'9-TeCB	U	ND	pg/L	2.61	108	
	0-TeCB	U	ND	pg/L	2.48	108	
	al-TeCB	U	ND	pg/L	2.84	108	
52663-62-4 8	2-PeCB	U	ND	pg/L	4.93	108	
	3-PeCB	U	ND	pg/L	5.60	108	
	4-PeCB	U	ND	pg/L	4.26	108	
	5-PeCB	CU	ND	pg/L	3.40	323	
	6-PeCB	BCJ	9.74	pg/L	3.55	646	
	7-PeCB	C86		_			
	8-PeCB	CU	ND	pg/L	4.09	215	
	9-PeCB	U	ND	pg/L	5.04	162	
	0-PeCB	BCJ	9.78	pg/L	3.60	323	
	1-PeCB	C88	ND		4.70	109	
	2-PeCB	U	ND	pg/L	4.78	108	
	3-PeCB	CU	ND	pg/L	3.73	215	
	4-PeCB	U BJ	ND 8 10	pg/L	3.81	108	
	15-PeCB 16-PeCB	U BJ	8.10 ND	pg/L	4.63 2.13	108 162	
15515-54-7 9		0	110	pg/L	2.13	102	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners ate of Analysis le Summary			Page 4	of 8
SDG Number: Lab Sample ID: Client Sample:	2010C61 17326001 1668A Water	326001 Date Collected: 10/26/2020 10:50			Project: Matrix:	HALL00113 WATER	
Client ID:	2010C61-001G RG-North-20201026				Prep Basis:	As Received	
Batch ID: Run Date: Data File: Prep Batch:	45453 11/28/2020 00:12 d27nov20a_2-6 45451	Method: Analyst: Prep Method:	EPA Method 1668A MJC SW846 3520C		Instrument: Dilution: Prep SOP Ref:	HRP875 1 CF-OA-E-001	
Prep Date:	26-NOV-20	Prep Aliquot:	928.5 mL				
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
41464-51-1 97-	-PeCB	C86					
60233-25-2 98-	-PeCB	CU	ND	pg/L	3.77	215	
38380-01-7 99-	-PeCB	U	ND	pg/L	3.38	108	
39485-83-1 10	0-PeCB	C93					
37680-73-2 10	1-PeCB	C90					
68194-06-9 102	2-PeCB	C98					
60145-21-3 102	3-PeCB	U	ND	pg/L	4.16	108	
56558-16-8 104	4-PeCB	U	ND	pg/L	1.81	215	
32598-14-4 103	5-PeCB	J	5.92	pg/L	3.81	162	
70424-69-0 10	6-PeCB	U	ND	pg/L	3.90	108	
70424-68-9 10	7-PeCB	U	ND	pg/L	3.02	108	
70362-41-3 103	8-PeCB	CU	ND	pg/L	3.42	215	
74472-35-8 109	9-PeCB	C86					
38380-03-9 110	0-PeCB	BCJ	10.3	pg/L	2.89	215	
39635-32-0 11	1-PeCB	U	ND	pg/L	2.80	108	
74472-36-9 112	2-PeCB	U	ND	pg/L	2.89	108	
68194-10-5 113	3-PeCB	C90					
74472-37-0 114	4-PeCB	U	ND	pg/L	3.68	108	
74472-38-1 11:	5-PeCB	C110					
18259-05-7 11	6-PeCB	C85					
68194-11-6 11	7-PeCB	C85					
31508-00-6 113	8-PeCB	J	11.8	pg/L	3.58	108	
	9-PeCB	C86					
	0-PeCB	U	ND	pg/L	3.27	108	
	1-PeCB	U	ND	pg/L	2.76	108	
	2-PeCB	U	ND	pg/L	4.74	108	
	3-PeCB	U	ND	pg/L	3.42	108	
	4-PeCB	C108					
	5-PeCB	C86					
	6-PeCB	U	ND	pg/L	4.09	108	
	7-PeCB	U	ND	pg/L	3.79	108	
38380-07-3 12	8-HxCB	CJ	2.82	pg/L	2.50	215	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners ate of Analysis		Page 5	of 8	
SDG Number: Lab Sample ID Client Sample:		Samp Client: Date Collected: Date Received:	ble Summary HALL001 10/26/2020 10:50 11/24/2020 11:36		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID:	2010C61-001G RG-North-20201026		EPA Method 1668A		Prep Basis:	As Received	
Run Date: Data File:	11/28/2020 00:12 d27nov20a_2-6	Analyst:	MJC		Instrument: Dilution:	HRP875 1	
Prep Batch: Prep Date:	45451 26-NOV-20	Prep Method: Prep Aliquot:	SW846 3520C 928.5 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
55215-18-4 12	29-HxCB	CJ	9.28	pg/L	2.61	323	
52663-66-8 13	30-HxCB	U	ND	pg/L	3.23	108	
61798-70-7 13	31-HxCB	U	ND	pg/L	3.02	108	
	32-HxCB	U	ND	pg/L	2.78	108	
35694-04-3 13	33-HxCB	U	ND	pg/L	3.19	108	
52704-70-8 13	34-HxCB	U	ND	pg/L	3.17	162	
	35-HxCB	CU	ND	pg/L	2.63	215	
	36-HxCB	U	ND	pg/L	1.85	108	
	37-HxCB	U	ND	pg/L	2.65	162	
	38-HxCB	C129					
	39-HxCB	CU	ND	pg/L	2.54	215	
	40-HxCB	C139					
	41-HxCB	U	ND	pg/L	2.67	108	
	42-HxCB	U	ND	pg/L	3.32	162	
	43-HxCB	U	ND	pg/L	3.14	108	
	44-HxCB	U	ND	pg/L	2.39	108	
	45-HxCB	U	ND	pg/L	1.57	108	
	46-HxCB	U	ND	pg/L	2.54	108	
	47-HxCB	BCJ	4.78	pg/L	2.52	215	
	48-HxCB	U	ND	pg/L	2.30	108	
	49-HxCB	C147	ND		1.51	100	
	50-HxCB	U C125	ND	pg/L	1.51	108	
	51-HxCB	C135	ND	nc/I	1 95	108	
	52-HxCB	U BCJ	ND	pg/L	1.85	108 215	
	53-HxCB 54-HxCB	U U	6.44 ND	pg/L	2.24 1.90	215 108	
	55-HxCB	U U	ND	pg/L	1.90 1.40	108	
	55-HXCB	CJ	2.80	pg/L	2.46	215	
	57-НхСВ	C156	2.00	pg/L	2.40	213	
	57-пхсв 58-НхСВ	U U	ND	nc/I	1.98	108	
	59-нхсв	U	ND	pg/L	1.98	108	
	59-нхсв 60-НхСВ	U	ND	pg/L pg/L	2.09	108	
-11711-02-5 10	00 HACD	0		Pg/L	2.07	100	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

			Page 6	of 8			
SDG Number: Lab Sample ID Client Sample:		Sample Summary Client: HALL001 Date Collected: 10/26/2020 10:3 Date Received: 11/24/2020 11:3			Project: Matrix:	HALL00113 WATER	
Client ID:	2010C61-001G RG-North-20201026				Prep Basis:	As Received	
Batch ID: Run Date: Data File:	45453 11/28/2020 00:12 d27nov20a_2-6	·			Instrument: Dilution:	HRP875 1	
Prep Batch: Prep Date:	45451 26-NOV-20	Prep Method: Prep Aliquot:	SW846 3520C 928.5 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
74472-43-8 1	61-HxCB	U	ND	pg/L	2.26	108	
	62-HxCB	U	ND	pg/L	1.57	108	
	63-HxCB	C129					
	64-HxCB	U	ND	pg/L	2.15	108	
	65-HxCB	U	ND	pg/L	2.13	108	
	66-HxCB	C128		_			
	67-HxCB	U	ND	pg/L	1.68	108	
	68-HxCB	C153		~	1.00	100	
	69-HxCB	U	ND	pg/L	1.90	108	
	70-HpCB	U CU	ND	pg/L	2.48	108	
	71-HpCB	U	ND ND	pg/L pg/L	2.50 2.52	215 108	
	72-НрСВ 73-НрСВ	C171	ND	pg/L	2.52	108	
	74-HpCB	U	ND	pg/L	2.28	108	
	75-HpCB	U	ND	pg/L	2.18	108	
	76-HpCB	U	ND	pg/L	1.70	108	
	77-HpCB	U	ND	pg/L	2.50	108	
	78-HpCB	U	ND	pg/L	2.35	108	
	79-HpCB	U	ND	pg/L	1.64	108	
35065-29-3 1	80-HpCB	CU	ND	pg/L	2.00	215	
74472-47-2 1	81-НрСВ	U	ND	pg/L	2.15	108	
60145-23-5	82-HpCB	U	ND	pg/L	2.07	108	
52663-69-1 1	83-HpCB	CU	ND	pg/L	2.18	215	
74472-48-3 1	84-HpCB	U	ND	pg/L	1.46	108	
52712-05-7 1	85-HpCB	C183					
74472-49-4 1	86-HpCB	U	ND	pg/L	1.55	108	
52663-68-0 1	87-HpCB	BJ	2.58	pg/L	1.85	108	
74487-85-7 1	88-HpCB	U	ND	pg/L	1.57	162	
39635-31-9 1	89-HpCB	U	ND	pg/L	2.37	108	
	90-HpCB	U	ND	pg/L	1.90	108	
	91-HpCB	U	ND	pg/L	1.85	108	
74472-51-8 1	92-HpCB	U	ND	pg/L	1.83	108	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners ate of Analysis de Summary		Page 7	of 8	
SDG Number Lab Sample I Client Sampl	ID: 17326001	Client: Date Collected: Date Received:	HALL001 10/26/2020 10:50 11/24/2020 11:36		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID:	2010C61-001G RG-North-20201026 45453	Method:	EPA Method 1668A		Prep Basis:	As Received	
Run Date: Data File: Prep Batch: Prep Date:	11/28/2020 00:12 d27nov20a_2-6 45451 26-NOV-20	Analyst: Prep Method: Prep Aliquot:	MJC SW846 3520C 928.5 mL		Instrument: Dilution: Prep SOP Ref:	HRP875 1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
69782-91-8	193-НрСВ	C180					
35694-08-7	194-OcCB	J	2.33	pg/L	2.28	108	
52663-78-2	195-OcCB	U	ND	pg/L	2.46	108	
42740-50-1	196-OcCB	U	ND	pg/L	2.13	108	
33091-17-7	197-OcCB	CU	ND	pg/L	1.55	215	
68194-17-2	198-OcCB	CJ	2.37	pg/L	2.11	215	
52663-75-9	199-OcCB	C198					
52663-73-7	200-OcCB	C197					
40186-71-8	201-OcCB	U	ND	pg/L	1.55	108	
2136-99-4	202-OcCB	U	ND	pg/L	1.66	108	
52663-76-0	203-OcCB	U	ND	pg/L	1.81	108	
74472-52-9	204-OcCB	U	ND	pg/L	1.59	108	
74472-53-0	205-OcCB	U	ND	pg/L	1.94	108	
40186-72-9	206-NoCB	U	ND	pg/L	4.09	108	
52663-79-3	207-NoCB	U	ND	pg/L	3.08	108	
52663-77-1	208-NoCB	U	ND	pg/L	2.93	108	
2051-24-3	209-DeCB	U	ND	pg/L	2.56	108	
1336-36-3	Total PCB Congeners	J	148	pg/L		108	

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1-MoCB		904	2150	pg/L	42.0	(15%-150%)
13C-3-MoCB		1040	2150	pg/L	48.3	(15%-150%)
13C-4-DiCB		1090	2150	pg/L	50.7	(25%-150%)
13C-15-DiCB		1520	2150	pg/L	70.4	(25%-150%)
13C-19-TrCB		1270	2150	pg/L	58.8	(25%-150%)
13C-37-TrCB		1430	2150	pg/L	66.2	(25%-150%)
13C-54-TeCB		1200	2150	pg/L	55.9	(25%-150%)
13C-77-TeCB		1630	2150	pg/L	75.7	(25%-150%)
13C-81-TeCB		1630	2150	pg/L	75.8	(25%-150%)
13C-104-PeCB		1310	2150	pg/L	60.9	(25%-150%)
13C-105-PeCB		1600	2150	pg/L	74.5	(25%-150%)
13C-114-PeCB		1580	2150	pg/L	73.4	(25%-150%)
13C-118-PeCB		1570	2150	pg/L	72.7	(25%-150%)
13C-123-PeCB		1660	2150	pg/L	76.8	(25%-150%)
13C-126-PeCB		1730	2150	pg/L	80.3	(25%-150%)
13C-155-HxCB		1370	2150	pg/L	63.4	(25%-150%)
13C-156-HxCB	С	3060	4310	pg/L	71.1	(25%-150%)
13C-157-HxCB	C156L					
13C-167-HxCB		1590	2150	pg/L	73.9	(25%-150%)
13C-169-HxCB		1700	2150	pg/L	79.1	(25%-150%)
13С-188-НрСВ		1480	2150	pg/L	68.6	(25%-150%)
13C-189-HpCB		1580	2150	pg/L	73.2	(25%-150%)

PCB Congeners Page 8 of 8 Certificate of Analysis Sample Summary										
SDG Number:	2010C61	Client:	HALL001		Project:	HALL00113				
Lab Sample ID:	17326001	Date Collected:	10/26/2020 10:50		Matrix:	WATER				
Client Sample:	1668A Water	Date Received:	11/24/2020 11:36							
Client ID:	2010C61-001G R <mark>G-North-20201026</mark>				Prep Basis:	As Received				
Batch ID:	45453	Method:	EPA Method 1668A							
Run Date:	11/28/2020 00:12	Analyst:	MJC		Instrument:	HRP875				
Data File:	d27nov20a_2-6				Dilution:	1				
Prep Batch:	45451	Prep Method:	SW846 3520C		Prep SOP Ref:	CF-OA-E-001				
Prep Date:	26-NOV-20	Prep Aliquot:	928.5 mL							
CAS No.	Parmname	Qual	Result	Units	EDL	PQL				

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-202-OcCB		1460	2150	pg/L	67.8	(25%-150%)
13C-205-OcCB		1670	2150	pg/L	77.6	(25%-150%)
13C-206-NoCB		1740	2150	pg/L	81.0	(25%-150%)
13C-208-NoCB		1500	2150	pg/L	69.8	(25%-150%)
3C-209-DeCB		1640	2150	pg/L	76.2	(25%-150%)
3C-28-TrCB		1580	2150	pg/L	73.2	(30%-135%)
13C-111-PeCB		1750	2150	pg/L	81.4	(30%-135%)
3С-178-НрСВ		1890	2150	pg/L	87.8	(30%-135%)

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners ate of Analysis le Summary		Page 1	of 8	
SDG Number: Lab Sample ID: Client Sample:	2010C61 17326002 1668A Water	Client: Date Collected: Date Received:	HALL001 10/28/2020 14:10 11/24/2020 11:36		Project: Matrix:	HALL00113 WATER	
Client ID:	2010C61-003G RG-South-20201028				Prep Basis:	As Received	
Batch ID: Run Date: Data File:	45453 11/28/2020 01:22 d27nov20a_2-7	Method: Analyst:	EPA Method 1668A MJC		Instrument: Dilution:	HRP875 1	
Prep Batch: Prep Date:	45451 26-NOV-20	Prep Method: Prep Aliquot:	SW846 3520C 939.6 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
2051-60-7 1-1	MoCB	U	ND	pg/L	5.64	106	
2051-61-8 2-1	MoCB	U	ND	pg/L	5.66	106	
2051-62-9 3-1	MoCB	U	ND	pg/L	4.73	106	
13029-08-8 4-1	DiCB	U	ND	pg/L	25.1	106	
16605-91-7 5-I	DiCB	U	ND	pg/L	12.5	106	
25569-80-6 6-1	DiCB	U	ND	pg/L	11.2	106	
	DiCB	U	ND	pg/L	9.66	106	
	DiCB	U	ND	pg/L	9.68	106	
	DiCB	U	ND	pg/L	13.4	106	
)-DiCB	U	ND	pg/L	11.9	106	
	-DiCB	BJ	66.0	pg/L	12.0	106	
	2-DiCB	CU	ND	pg/L	10.8	213	
	-DiCB	C12		_			
	-DiCB	U	ND	pg/L	11.9	106	
	-DiCB	U	ND	pg/L	9.96	106	
	-TrCB	U	ND	pg/L	4.36	106	
	-TrCB	U	ND	pg/L	5.87	160	
	-TrCB	CU	ND	pg/L	9.51	213	
	-TrCB -TrCB	U BCJ	ND 16.0	pg/L	6.15	106 213	
	-TrCB	BCJ	7.22	pg/L	3.30	213	
	-TrCB	Ъ ВС1	5.96	pg/L pg/L	3.41 3.26	106	
	-TrCB	J U	5.96 ND	pg/L pg/L	3.19	106	
	-TrCB	U	ND	pg/L pg/L	3.60	106	
	-TrCB	U	ND	pg/L pg/L	2.89	106	
	j-TrCB	CJ	4.09	pg/L pg/L	3.53	213	
	-TrCB	U	ND	pg/L	3.81	106	
	3-TrCB	C20	- 120	P8/1	2.01	100	
	-TrCB	C26					
	-TrCB	C18					
	-TrCB	ВЈ	14.0	pg/L	3.36	106	
	-TrCB	U	ND	pg/L	3.98	106	
				13			

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners ate of Analysis le Summary			Page 2	of 8
SDG Number: Lab Sample ID Client Sample:): 17326002	Client: Date Collected: Date Received:	HALL001 10/28/2020 14:10 11/24/2020 11:36		Project: Matrix:	HALL00113 WATER	
Client ID:	2010C61-003G RG-South-20201028				Prep Basis:	As Received	
Batch ID: Run Date: Data File: Prep Batch:	45453 11/28/2020 01:22 d27nov20a_2-7 45451	Method: Analyst: Prep Method:	EPA Method 1668A MJC SW846 3520C		Instrument: Dilution: Prep SOP Ref:	HRP875 1 CF-OA-E-001	
Prep Date:	26-NOV-20	Prep Aliquot:	939.6 mL		-		
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
38444-86-9 3	33-TrCB	C21					
37680-68-5 3	34-TrCB	U	ND	pg/L	3.85	106	
37680-69-6 3	35-TrCB	U	ND	pg/L	3.49	106	
38444-87-0 3	36-TrCB	U	ND	pg/L	3.34	106	
38444-90-5 3	37-TrCB	J	6.07	pg/L	3.34	106	
53555-66-1 3	38-TrCB	U	ND	pg/L	3.45	106	
38444-88-1 3	39-TrCB	U	ND	pg/L	2.83	106	
38444-93-8 4	40-TeCB	BCJ	6.77	pg/L	5.73	213	
52663-59-9 4	41-TeCB	U	ND	pg/L	9.47	160	
36559-22-5 4	42-TeCB	U	ND	pg/L	6.62	160	
70362-46-8 4	I3-TeCB	U	ND	pg/L	6.64	106	
41464-39-5 4	14-TeCB	CU	ND	pg/L	26.7	319	
70362-45-7 4	45-TeCB	CU	ND	pg/L	4.87	213	
41464-47-5 4	46-TeCB	U	ND	pg/L	3.26	106	
2437-79-8 4	47-TeCB	C44					
70362-47-9 4	48-TeCB	U	ND	pg/L	6.30	160	
41464-40-8 4	49-TeCB	BCJ	12.2	pg/L	5.87	213	
62796-65-0 5	50-TeCB	CJ	3.68	pg/L	2.85	213	
68194-04-7 5	51-TeCB	C45					
35693-99-3 5	52-TeCB	BJ	31.5	pg/L	7.36	213	
41464-41-9 5	53-TeCB	C50					
15968-05-5 5	54-TeCB	U	ND	pg/L	2.41	106	
	55-TeCB	U	ND	pg/L	3.24	106	
	56-TeCB	BJ	7.17	pg/L	3.38	106	
	57-TeCB	U	ND	pg/L	3.55	106	
	58-TeCB	U	ND	pg/L	3.26	106	
	59-TeCB	CU	ND	pg/L	5.15	319	
	50-TeCB	J	3.64	pg/L	3.21	106	
	51-TeCB	BCJ	34.1	pg/L	3.21	426	
	52-TeCB	C59					
	53-TeCB	U	ND	pg/L	3.49	106	
52663-58-8 6	54-TeCB	U	ND	pg/L	7.56	106	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners ate of Analysis le Summary			Page 3	of 8
SDG Number: Lab Sample ID Client Sample:	2010C61 : 17326002 1668A Water	Client: Date Collected: Date Received:	HALL001 10/28/2020 14:10 11/24/2020 11:36		Project: Matrix:	HALL00113 WATER	
Client ID:	2010C61-003G RG-South-20201028				Prep Basis:	As Received	
Batch ID: Run Date: Data File: Prep Batch:	45453 11/28/2020 01:22 d27nov20a_2-7 45451	Method: Analyst: Prep Method:	EPA Method 1668A MJC SW846 3520C		Instrument: Dilution: Prep SOP Ref:	HRP875 1 CF-OA-E-001	
Prep Date:	26-NOV-20	Prep Aliquot:	939.6 mL		•		
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
33284-54-7 65	5-TeCB	C44					
32598-10-0 60	6-TeCB	BJ	17.8	pg/L	3.64	213	
73575-53-8 6	7-TeCB	U	ND	pg/L	2.96	106	
73575-52-7 68	8-TeCB	U	ND	pg/L	2.87	106	
60233-24-1 69	9-TeCB	C49					
32598-11-1 70	0-TeCB	C61					
41464-46-4 7	1-TeCB	C40					
41464-42-0 72	2-TeCB	U	ND	pg/L	3.43	106	
74338-23-1 7.	3-TeCB	U	ND	pg/L	5.13	106	
32690-93-0 74	4-TeCB	C61					
	5-TeCB	C59					
	6-TeCB	C61					
	7-TeCB	U	ND	pg/L	5.32	106	
	8-TeCB	U	ND	pg/L	3.98	106	
	9-TeCB	U	ND	pg/L	3.24	106	
	0-TeCB	U	ND	pg/L	3.07	106	
	1-TeCB	U	ND	pg/L	3.62	106	
	2-PeCB	U	ND	pg/L	6.94	106	
	3-PeCB	U	ND	pg/L	7.88	106	
	4-PeCB	J	9.88	pg/L	5.98	106	
	5-PeCB 6-PeCB	CU BCJ	ND 28.9	pg/L	4.79 5.00	319 639	
	7-PeCB	С86	28.9	pg/L	5.00	039	
	8-PeCB	C80 CU	ND	pg/I	5.75	213	
	9-PeCB	U	ND	pg/L pg/L	7.09	160	
	0-PeCB	BCJ	42.6	pg/L	5.04	319	
	1-PeCB	C88		r5/1	2.01		
	2-PeCB	J	10.8	pg/L	6.70	106	
	3-PeCB	CU	ND	pg/L	5.24	213	
	4-PeCB	U	ND	pg/L	5.36	106	
	5-PeCB	BJ	37.6	pg/L	6.49	106	
	6-PeCB	U	ND	pg/L	2.53	160	
				10			

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners cate of Analysis ble Summary			Page 4	of 8
SDG Number: Lab Sample ID Client Sample:	D: 17326002	Client: Date Collected: Date Received:	HALL001 10/28/2020 14:10 11/24/2020 11:36		Project: Matrix:	HALL00113 WATER	
Client ID:	2010C61-003G <mark>RG-South-20201028</mark>				Prep Basis:	As Received	
Batch ID: Run Date: Data File: Prep Batch:	45453 11/28/2020 01:22 d27nov20a_2-7 45451	Method: Analyst: Prep Method:	EPA Method 1668A MJC SW846 3520C		Instrument: Dilution: Prep SOP Ref:	HRP875 1 CF-OA-E-001	
Prep Date:	26-NOV-20	Prep Aliquot:	939.6 mL				
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
	07-PeCB	C86					
	08-PeCB	CU	ND	pg/L	5.28	213	
	09-PeCB	BJ	14.1	pg/L	4.75	106	
	00-PeCB	C93					
	01-PeCB	C90					
	02-PeCB	C98					
	03-PeCB	U	ND	pg/L	5.83	106	
	04-PeCB	U	ND	pg/L	2.06	213	
	05-PeCB	J	19.6	pg/L	4.60	160	
	06-PeCB	U	ND	pg/L	4.68	106	
	07-PeCB	U	ND	pg/L	3.64	106	
	08-PeCB	CU	ND	pg/L	4.13	213	
	09-PeCB	C86		_			
	10-PeCB	BCJ	49.6	pg/L	4.07	213	
	11-PeCB	U	ND	pg/L	3.94	106	
	12-PeCB	U	ND	pg/L	4.07	106	
	13-PeCB	C90		~			
	14-PeCB	U	ND	pg/L	4.51	106	
	15-PeCB	C110					
	16-PeCB	C85					
	17-PeCB	C85	12.0		1.00	106	
	118-PeCB	J	42.8	pg/L	4.28	106	
	19-PeCB	C86	ND	n~/I	1.60	106	
	20-PeCB	U	ND	pg/L	4.60	106	
	21-PeCB 22-PeCB	U U	ND ND	pg/L	3.90 5.70	106 106	
	23-PeCB	U	ND	pg/L	4.19	106	
	24-PeCB	C108	ΠD	pg/L	4.17	100	
	25-PeCB	C108					
	26-PeCB	U	ND	pg/L	4.77	106	
	27-PeCB	U	ND	pg/L pg/L	4.77	106	
	28-HxCB	CJ	9.92	pg/L pg/L	3.32	213	
55560-07-5 1	20 HACD	C.	7.72	Pg/L	5.54	215	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners ate of Analysis			Page 5	of 8
SDG Number: Lab Sample ID Client Sample:	2010C61 : 17326002 1668A Water	Samp Client: Date Collected: Date Received:	le Summary HALL001 10/28/2020 14:10 11/24/2020 11:36		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID:	2010C61-003G R <mark>G-South-20201028</mark> 45453	Method:	EPA Method 1668A		Prep Basis:	As Received	
Run Date: Data File:	11/28/2020 01:22 d27nov20a_2-7	Analyst:	MJC		Instrument: Dilution:	HRP875 1	
Prep Batch: Prep Date:	45451 26-NOV-20	Prep Method: Prep Aliquot:	SW846 3520C 939.6 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
55215-18-4 12	29-HxCB	CJ	79.3	pg/L	3.49	319	
52663-66-8 13	30-HxCB	U	ND	pg/L	4.34	106	
61798-70-7 13	31-HxCB	U	ND	pg/L	4.02	106	
38380-05-1 13	32-HxCB	J	20.6	pg/L	3.70	106	
	33-HxCB	U	ND	pg/L	4.24	106	
	34-HxCB	U	ND	pg/L	4.24	160	
	35-HxCB	BCJ	23.3	pg/L	3.53	213	
	36-HxCB	J	7.96	pg/L	2.87	106	
	37-HxCB	U	ND	pg/L	3.53	160	
	38-HxCB	C129		_			
	39-HxCB	CU	ND	pg/L	3.38	213	
	40-HxCB	C139	10.4	~	2.55	107	
	41-HxCB	J	12.4	pg/L	3.55	106	
	42-HxCB	U	ND	pg/L	4.41	160	
	43-HxCB	U J	ND 4.00	pg/L	4.19	106	
	44-HxCB 45-HxCB	J U	4.00 ND	pg/L	3.75 2.47	106 106	
	46-HxCB	U	ND	pg/L pg/L	11.7	106	
	47-HxCB	CJ	51.3	pg/L pg/L	3.36	213	
	48-HxCB	U U	ND	pg/L pg/L	3.62	106	
	49-HxCB	C147		r5/1	5.02	100	
	50-HxCB	U	ND	pg/L	2.36	106	
	51-HxCB	C135		18-			
	52-HxCB	U	ND	pg/L	2.87	106	
	53-HxCB	BCJ	64.4	pg/L	2.98	213	
	54-HxCB	U	ND	pg/L	2.96	106	
	55-HxCB	U	ND	pg/L	2.23	106	
38380-08-4 15	56-HxCB	CJ	8.79	pg/L	2.92	213	
69782-90-7 15	57-HxCB	C156					
74472-42-7 15	58-HxCB	J	6.22	pg/L	2.64	106	
39635-35-3 15	59-HxCB	U	ND	pg/L	2.06	106	
41411-62-5 10	50-HxCB	U	ND	pg/L	2.77	106	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

SDG Number:2010C61Client:HALL001Lab Sample ID:17326002Date Collected:10/28/2020 14:10Matrix:WATERClient Sample:1668A WaterDate Received:11/24/2020 11:36Prep Basis:As ReceivedClient ID:2010C61-003G RG-South-20201028Method:EPA Method 1668APrep Basis:As ReceivedBatch ID:45453Method:EPA Method 1668AInstrument:HRP875Data File:d27nov20a_2-7Prep Method:SW846 3520CPrep SOP Ref:CF-OA-E-001Prep Date:26-NOV-20Prep Aliquot:939.6 mLUNDpg/L3.0210674472-43-8161-HxCBUNDpg/L1.89106106			Certific	Congeners ate of Analysis le Summary			Page 6	of 8
Batch ID:45453Method:EPA Method 1668ARun Date:11/28/2020 01:22Analyst:MJCInstrument:HRP875Data File:d27nov20a_2-7Dilution:1Prep Batch:45451Prep Method:SW846 3520CPrep SOP Ref:CF-OA-E-001Prep Date:26-NOV-20Prep Aliquot:939.6 mLVVPCLCAS No.ParmnameQualResultUnitsEDLPQL74472-43-8161-HxCBUNDpg/L3.02106	Lab Sample ID:	17326002	Client: Date Collected:	HALL001 10/28/2020 14:10				
Run Date:11/28/2020 01:22Analyst:MJCInstrument:HRP875Data File:d27nov20a_2-7Dilution:1Prep Batch:45451Prep Method:SW846 3520CPrep SOP Ref:CF-OA-E-001Prep Date:26-NOV-20Prep Aliquot:939.6 mLVVVCAS No.ParmnameQualResultUnitsEDLPQL74472-43-8161-HxCBUNDpg/L3.02106						Prep Basis:	As Received	
Prep Batch:45451Prep Method:SW846 3520CPrep SOP Ref:CF-OA-E-001Prep Date:26-NOV-20Prep Aliquot:939.6 mLPrep Aliquot:939.6 mLCAS No.ParmnameQualResultUnitsEDLPQL74472-43-8161-HxCBUNDpg/L3.02106	Run Date:	11/28/2020 01:22						
74472-43-8 161-HxCB U ND pg/L 3.02 106	Prep Batch:	45451	•			Prep SOP Ref:	CF-OA-E-001	
		Parmname	Qual	Result	Units	EDL	PQL	
39635-34-2 162-HxCB U ND pg/L 1.89 106	74472-43-8 161	1-HxCB	U	ND	pg/L	3.02	106	
				ND	pg/L	1.89	106	
74472-44-9 163-HxCB C129								
74472-45-0 164-HxCB U ND pg/L 5.11 106								
74472-46-1 165-HxCB U ND pg/L 2.83 106				ND	pg/L	2.83	106	
41411-63-6 166-HxCB C128					_			
52663-72-6 167-HxCB J 3.60 pg/L 2.00 106				3.60	pg/L	2.00	106	
59291-65-5 168-HxCB C153						2.24	10.5	
32774-16-6 169-HxCB U ND pg/L 2.34 106								
35065-30-6 170-HpCB J 19.6 pg/L 4.19 106 52623 71 5 171 H=CD CL 7.29 7.4 212		-						
52663-71-5 171-HpCB CJ 7.28 pg/L 4.21 213 52663-74-8 172-HpCB J 4.41 pg/L 4.26 106		-						
52663-74-8 172-HpCB J 4.41 pg/L 4.26 106 68194-16-1 173-HpCB C171		-		4.41	pg/L	4.20	100	
38411-25-5 174-HpCB J 20.2 pg/L 3.85 106		-		20.2	ng/I	3.85	106	
40186-70-7 175-HpCB U ND pg/L 2.96 106		-						
52663-65-7 176-HpCB J 3.02 pg/L 2.32 106		-						
52663-70-4 177-HpCB J 14.5 pg/L 4.21 106		-						
52663-67-9 178-HpCB U ND pg/L 5.13 106		-	U					
52663-64-6 179-HpCB J 8.51 pg/L 2.23 106		-	J	8.51			106	
35065-29-3 180-HpCB CJ 41.1 pg/L 3.36 213	35065-29-3 180	0-HpCB	CJ	41.1	pg/L	3.36	213	
74472-47-2 181-HpCB U ND pg/L 3.62 106	74472-47-2 181	1-HpCB	U	ND	pg/L	3.62	106	
60145-23-5 182-HpCB U ND pg/L 2.83 106	60145-23-5 182	2-HpCB	U	ND	pg/L	2.83	106	
52663-69-1 183-HpCB CU ND pg/L 13.1 213	52663-69-1 183	3-HpCB	CU	ND	pg/L	13.1	213	
74472-48-3 184-HpCB U ND pg/L 1.98 106	74472-48-3 184	4-HpCB	U	ND	pg/L	1.98	106	
52712-05-7 185-HpCB C183	52712-05-7 185	5-HpCB	C183					
74472-49-4 186-HpCB U ND pg/L 2.13 106	74472-49-4 186	6-HpCB	U	ND	pg/L	2.13	106	
52663-68-0 187-HpCB BJ 21.9 pg/L 2.53 106	52663-68-0 187	7-HpCB		21.9	pg/L	2.53	106	
74487-85-7 188-HpCB U ND pg/L 2.17 160	74487-85-7 188	8-НрСВ		ND	pg/L	2.17	160	
39635-31-9 189-HpCB U ND pg/L 2.53 106	39635-31-9 189	9-HpCB		ND	pg/L	2.53	106	
41411-64-7 190-HpCB U ND pg/L 4.41 106		-			pg/L		106	
74472-50-7 191-HpCB U ND pg/L 3.15 106								
74472-51-8 192-HpCB U ND pg/L 3.09 106	74472-51-8 192	2-НрСВ	U	ND	pg/L	3.09	106	

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certific	Congeners ate of Analysis de Summary			Page 7	of 8
SDG Number Lab Sample I Client Sampl	ID: 17326002	Client: Date Collected: Date Received:	HALL001 10/28/2020 14:10 11/24/2020 11:36		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID:	2010C61-003G RG-South-20201028 45453	Method:	EPA Method 1668A MJC		Prep Basis: Instrument:	As Received HRP875	
Run Date: Data File: Prep Batch: Prep Date:	11/28/2020 01:22 d27nov20a_2-7 45451 26-NOV-20	Analyst: Prep Method: Prep Aliquot:	MJC SW846 3520C 939.6 mL		Dilution: Prep SOP Ref:	1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
69782-91-8	193-НрСВ	C180					
35694-08-7	194-OcCB	J	9.86	pg/L	2.43	106	
52663-78-2	195-OcCB	J	4.38	pg/L	2.60	106	
42740-50-1	196-OcCB	U	ND	pg/L	4.58	106	
33091-17-7	197-OcCB	CU	ND	pg/L	1.89	213	
68194-17-2	198-OcCB	CU	ND	pg/L	11.8	213	
52663-75-9	199-OcCB	C198					
52663-73-7	200-OcCB	C197					
40186-71-8	201-OcCB	U	ND	pg/L	1.92	106	
2136-99-4	202-OcCB	J	2.55	pg/L	2.00	106	
52663-76-0	203-OcCB	J	6.39	pg/L	2.21	106	
74472-52-9	204-OcCB	U	ND	pg/L	1.96	106	
74472-53-0	205-OcCB	U	ND	pg/L	2.06	106	
40186-72-9	206-NoCB	J	5.19	pg/L	4.60	106	
52663-79-3	207-NoCB	U	ND	pg/L	3.41	106	
52663-77-1	208-NoCB	U	ND	pg/L	3.21	106	
2051-24-3	209-DeCB	J	2.92	pg/L	2.77	106	
1336-36-3	Total PCB Congeners	J	<mark>956</mark>	pg/L		106	

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1-MoCB		855	2130	pg/L	40.2	(15%-150%)
13C-3-MoCB		967	2130	pg/L	45.4	(15%-150%)
13C-4-DiCB		966	2130	pg/L	45.4	(25%-150%)
13C-15-DiCB		1370	2130	pg/L	64.4	(25%-150%)
13C-19-TrCB		1150	2130	pg/L	54.1	(25%-150%)
13C-37-TrCB		1400	2130	pg/L	65.8	(25%-150%)
13C-54-TeCB		1150	2130	pg/L	53.9	(25%-150%)
13C-77-TeCB		1640	2130	pg/L	76.9	(25%-150%)
13C-81-TeCB		1610	2130	pg/L	75.8	(25%-150%)
13C-104-PeCB		1270	2130	pg/L	59.9	(25%-150%)
13C-105-PeCB		1530	2130	pg/L	72.0	(25%-150%)
13C-114-PeCB		1510	2130	pg/L	70.7	(25%-150%)
13C-118-PeCB		1500	2130	pg/L	70.5	(25%-150%)
13C-123-PeCB		1590	2130	pg/L	74.5	(25%-150%)
13C-126-PeCB		1690	2130	pg/L	79.4	(25%-150%)
13C-155-HxCB		1300	2130	pg/L	61.0	(25%-150%)
13C-156-HxCB	С	2940	4260	pg/L	69.1	(25%-150%)
13C-157-HxCB	C156L					
13C-167-HxCB		1520	2130	pg/L	71.4	(25%-150%)
13C-169-HxCB		1600	2130	pg/L	75.4	(25%-150%)
13С-188-НрСВ		1380	2130	pg/L	64.6	(25%-150%)
13С-189-НрСВ		1500	2130	pg/L	70.4	(25%-150%)

		РСВ	Congeners			Page 8 of 8
		Certific	ate of Analysis			
		Samp	ole Summary			
SDG Number:	2010C61	Client:	HALL001		Project:	HALL00113
Lab Sample ID:	17326002	Date Collected:	10/28/2020 14:10		Matrix:	WATER
Client Sample:	1668A Water	Date Received:	11/24/2020 11:36			
Client ID:	2010C61-003G RG-South-20201028				Prep Basis:	As Received
Batch ID:	45453	Method:	EPA Method 1668A			
Run Date:	11/28/2020 01:22	Analyst:	MJC		Instrument:	HRP875
Data File:	d27nov20a_2-7				Dilution:	1
Prep Batch:	45451	Prep Method:	SW846 3520C		Prep SOP Ref:	CF-OA-E-001
Prep Date:	26-NOV-20	Prep Aliquot:	939.6 mL			
CAS No.	Parmname	Qual	Result	Units	EDL	PQL

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-202-OcCB		1360	2130	pg/L	63.9	(25%-150%)
13C-205-OcCB		1580	2130	pg/L	74.1	(25%-150%)
13C-206-NoCB		1630	2130	pg/L	76.6	(25%-150%)
13C-208-NoCB		1420	2130	pg/L	66.6	(25%-150%)
13C-209-DeCB		1540	2130	pg/L	72.3	(25%-150%)
13C-28-TrCB		1570	2130	pg/L	73.7	(30%-135%)
13C-111-PeCB		1750	2130	pg/L	82.3	(30%-135%)
13C-178-HpCB		1800	2130	pg/L	84.8	(30%-135%)

B The target analyte was detected in the associated blank.

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

Quality Control Summary

Page 1 of 3

PCB Congeners Surrogate Recovery Report

SDG Number: 2010C61

Matrix Type: LIQUID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
2028048	LCS for batch 45451	13C-1-MoCB		41.8	(15%-140%)
		13C-3-MoCB		46.4	(15%-140%)
		13C-4-DiCB		48.3	(30%-140%)
		13C-15-DiCB		64.8	(30%-140%)
		13C-19-TrCB		55.5	(30%-140%)
		13C-37-TrCB		63.3	(30%-140%)
		13C-54-TeCB		53.7	(30%-140%)
		13C-77-TeCB		74.7	(30%-140%)
		13C-81-TeCB		75.2	(30%-140%)
		13C-104-PeCB		58.9	(30%-140%)
		13C-105-PeCB		74.8	(30%-140%)
		13C-114-PeCB		72.8	(30%-140%)
		13C-118-PeCB		72.8	(30%-140%)
	13C-123-PeCB		76.3	(30%-140%)	
	13C-126-PeCB		81.6	(30%-140%)	
	13C-155-HxCB		60.0	(30%-140%)	
	13C-156-HxCB	С	72.8	(30%-140%)	
		13C-157-HxCB	C156L		
	13C-167-HxCB		74.6	(30%-140%)	
	13C-169-HxCB		80.7	(30%-140%)	
	13C-188-HpCB		63.7	(30%-140%)	
	13C-189-HpCB		73.8	(30%-140%)	
	13C-202-OcCB		65.9	(30%-140%)	
	13C-205-OcCB		77.2	(30%-140%)	
	13C-206-NoCB		81.5	(30%-140%)	
	13C-208-NoCB		69.3	(30%-140%)	
		13C-209-DeCB		76.1	(30%-140%)
		13C-28-TrCB		68.9 76.1	(40%-125%)
		13C-111-PeCB		76.1	(40%-125%)
		13С-178-НрСВ		83.5	(40%-125%)
028049	LCSD for batch 45451	13C-1-MoCB		41.4	(15%-140%)
		13C-3-MoCB		46.8	(15%-140%)
		13C-4-DiCB		49.3	(30%-140%)
		13C-15-DiCB		62.7	(30%-140%)
		13C-19-TrCB		54.9	(30%-140%)
		13C-37-TrCB		62.3	(30%-140%)
		13C-54-TeCB		56.0	(30%-140%)
		13C-77-TeCB		71.6	(30%-140%)
		13C-81-TeCB		72.2	(30%-140%)
		13C-104-PeCB		60.8	(30%-140%)
		13C-105-PeCB		71.7	(30%-140%)
		13C-114-PeCB		70.4	(30%-140%)
		13C-118-PeCB		70.2	(30%-140%)
		13C-123-PeCB		73.2	(30%-140%)
		13C-126-PeCB		76.1	(30%-140%)
		13C-155-HxCB		63.1	(30%-140%)
		13C-156-HxCB	С	68.9	(30%-140%)
		13C-157-HxCB	C156L		
		13C-167-HxCB		72.2	(30%-140%)
		13C-169-HxCB		76.1	(30%-140%)
		13С-188-НрСВ		67.5	(30%-140%)
	13C-189-HpCB		72.1	(30%-140%)	

Page 2 of 3

PCB Congeners Surrogate Recovery Report

SDG Number: 2010C61

Matrix Type: LIQUID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
2028049	LCSD for batch 45451	13C-202-OcCB		68.0	(30%-140%)
		13C-205-OcCB		78.2	(30%-140%)
		13C-206-NoCB		83.3	(30%-140%)
		13C-208-NoCB		71.3	(30%-140%)
		13C-209-DeCB		79.1	(30%-140%)
		13C-28-TrCB		67.9	(40%-125%)
		13C-111-PeCB		74.3	(40%-125%)
		13С-178-НрСВ		82.9	(40%-125%)
028047	MB for batch 45451	13C-1-MoCB		37.7	(15%-150%)
		13C-3-MoCB		44.4	(15%-150%)
		13C-4-DiCB		45.9	(25%-150%)
		13C-15-DiCB		66.3	(25%-150%)
		13C-19-TrCB		54.0	(25%-150%)
		13C-37-TrCB		58.3	(25%-150%)
		13C-54-TeCB		47.9	(25%-150%)
		13C-77-TeCB		67.7	(25%-150%)
		13C-81-TeCB		67.9	(25%-150%)
		13C-104-PeCB		52.6	(25%-150%)
	13C-105-PeCB		65.8	(25%-150%)	
	13C-114-PeCB		64.3	(25%-150%)	
		13C-118-PeCB		63.9	(25%-150%)
		13C-123-PeCB		67.5	(25%-150%)
		13C-126-PeCB		72.0	(25%-150%)
		13C-155-HxCB		53.9	(25%-150%)
	13C-156-HxCB	С	62.5	(25%-150%)	
		13C-157-HxCB	C156L		()
		13C-167-HxCB		64.8	(25%-150%)
		13C-169-HxCB		69.4	(25%-150%)
		13C-188-HpCB		57.6	(25%-150%)
		13C-189-HpCB		65.1	(25%-150%)
		13C-202-OcCB		58.5	(25%-150%)
		13C-205-OcCB		68.2	(25%-150%)
		13C-206-NoCB		71.4	(25%-150%)
		13C-208-NoCB		61.8	(25%-150%)
		13C-209-DeCB		66.9	(25%-150%)
		13C-28-TrCB		68.7	(30%-135%)
		13C-111-PeCB		74.1	(30%-135%)
		13С-178-НрСВ		80.6	(30%-135%)
326001	2010C61-001G RG-North-20201026	13C-1-MoCB		42.0	(15%-150%)
		13C-3-MoCB		48.3	(15%-150%)
		13C-4-DiCB		50.7	(25%-150%)
		13C-15-DiCB		70.4	(25%-150%)
		13C-19-TrCB		58.8	(25%-150%)
		13C-37-TrCB		66.2	(25%-150%)
		13C-54-TeCB		55.9	(25%-150%)
		13C-77-TeCB		75.7	(25%-150%)
		13C-81-TeCB		75.8	(25%-150%)
		13C-104-PeCB		60.9	(25%-150%)
		13C-105-PeCB		74.5	(25%-150%)
		13C-114-PeCB		73.4	(25%-150%)

Page 3 of 3

PCB Congeners Surrogate Recovery Report

SDG Number: 2010C61

Matrix Type: LIQUID

Sample ID	Client ID	Surrogate	QUAL	Recovery (%)	Acceptance Limits
7326001	2010C61-001G RG-North-20201026	13C-123-PeCB		76.8	(25%-150%)
		13C-126-PeCB		80.3	(25%-150%)
		13C-155-HxCB		63.4	(25%-150%)
		13C-156-HxCB	С	71.1	(25%-150%)
		13C-157-HxCB	C156L		
		13C-167-HxCB		73.9	(25%-150%)
		13C-169-HxCB		79.1	(25%-150%)
		13C-188-HpCB		68.6	(25%-150%)
		13C-189-HpCB		73.2	(25%-150%)
		13C-202-OcCB		67.8	(25%-150%)
		13C-205-OcCB		77.6	(25%-150%)
		13C-206-NoCB		81.0	(25%-150%)
		13C-208-NoCB		69.8	(25%-150%)
		13C-209-DeCB		76.2	(25%-150%)
		13C-28-TrCB		73.2	(30%-135%)
		13C-111-PeCB		81.4	(30%-135%)
		13С-178-НрСВ		87.8	(30%-135%)
7326002 2010C61-003G RG-South-20201028	2010C61-003G RG-South-20201028	13C-1-MoCB		40.2	(15%-150%)
	13C-3-MoCB		45.4	(15%-150%)	
	13C-4-DiCB		45.4	(25%-150%)	
		13C-15-DiCB		64.4	(25%-150%)
		13C-19-TrCB		54.1	(25%-150%)
		13C-37-TrCB		65.8	(25%-150%)
		13C-54-TeCB		53.9	(25%-150%)
		13C-77-TeCB		76.9	(25%-150%)
		13C-81-TeCB		75.8	(25%-150%)
		13C-104-PeCB		59.9	(25%-150%)
		13C-105-PeCB		72.0	(25%-150%)
		13C-114-PeCB		72.0	(25%-150%)
		13C-118-PeCB		70.7	(25%-150%)
		13C-123-PeCB		74.5	(25%-150%)
		13C-126-PeCB		79.4	(25%-150%)
		13C-125-HxCB			(25%-150%)
			С	61.0	· · · · · ·
		13C-156-HxCB 13C-157-HxCB	C156L	69.1	(25%-150%)
			CIJOL	71.4	(250/ 1500/)
		13C-167-HxCB		71.4	(25%-150%)
		13C-169-HxCB		75.4	(25%-150%)
		13C-188-HpCB		64.6	(25%-150%)
		13C-189-HpCB		70.4	(25%-150%)
		13C-202-OcCB		63.9	(25%-150%)
		13C-205-OcCB		74.1	(25%-150%)
		13C-206-NoCB		76.6	(25%-150%)
		13C-208-NoCB		66.6	(25%-150%)
		13C-209-DeCB		72.3	(25%-150%)
		13C-28-TrCB		73.7	(30%-135%)
		13C-111-PeCB		82.3	(30%-135%)
		13C-178-HpCB		84.8	(30%-135%)

* Recovery outside Acceptance Limits

Column to be used to flag recovery values

D Sample Diluted

of 2

Page 1

PCB Congeners **Quality Control Summary Spike Recovery Report**

SDG Number:	2010C61
Client ID:	LCS for batch 45451
Lab Sample ID:	12028048
Instrument:	HRP875
Analyst:	MJC

Sample Type: Laboratory Control Sample Matrix: WATER

Analysis Date: 11/27/2020 20:44 Prep Batch ID:45451

Diluti .

Batch ID: 45453

Dilution:	1

Amount Spike

			Added	Conc.	Recoverv	Acceptance	
CAS No.		Parmname	pg/L	pg/L	%	Limits	
2051-60-7	LCS	1-MoCB	500	560	112	50-150	
2051-62-9	LCS	3-MoCB	500	619	124	50-150	
13029-08-8	LCS	4-DiCB	500	498	99.6	50-150	
2050-68-2	LCS	15-DiCB	500	612	122	50-150	
38444-73-4	LCS	19-TrCB	500	554	111	50-150	
38444-90-5	LCS	37-TrCB	500	591	118	50-150	
15968-05-5	LCS	54-TeCB	1000	1060	106	50-150	
32598-13-3	LCS	77-TeCB	1000	1130	113	50-150	
70362-50-4	LCS	81-TeCB	1000	896	89.6	50-150	
56558-16-8	LCS	104-PeCB	1000	1130	113	50-150	
32598-14-4	LCS	105-PeCB	1000	1010	101	50-150	
74472-37-0	LCS	114-PeCB	1000	1220	122	50-150	
31508-00-6	LCS	118-PeCB	1000	1310	131	50-150	
65510-44-3	LCS	123-PeCB	1000	1090	109	50-150	
57465-28-8	LCS	126-PeCB	1000	1170	117	50-150	
33979-03-2	LCS	155-HxCB	1000	1120	112	50-150	
38380-08-4	LCS	156-HxCB	2000	C 2340	117	50-150	
69782-90-7	LCS	157-HxCB		C156			
52663-72-6	LCS	167-HxCB	1000	1100	110	50-150	
32774-16-6	LCS	169-HxCB	1000	1190	119	50-150	
74487-85-7	LCS	188-HpCB	1000	1130	113	50-150	
39635-31-9	LCS	189-HpCB	1000	1160	116	50-150	
2136-99-4	LCS	202-OcCB	1500	1660	110	50-150	
74472-53-0	LCS	205-OcCB	1500	1600	107	50-150	
40186-72-9	LCS	206-NoCB	1500	1560	104	50-150	
52663-77-1	LCS	208-NoCB	1500	1720	114	50-150	
2051-24-3	LCS	209-DeCB	1500	1650	110	50-150	

of 2

Page 2

PCB Congeners Quality Control Summary Spike Recovery Report

SDG Number:	2010C61
Client ID:	LCSD for batch 45451
Lab Sample ID:	12028049
Instrument:	HRP875
Analyst:	MJC

Sample Type:Laboratory Control Sample DuplicateMatrix:WATER

Analysis Date: 11/27/2020 21:53 Dilution: 1 Prep Batch ID:45451 Batch ID: 45453

110

50-150

1660

0.498

0-20

			Batch ID: 45453						
CAS No.		Parmname	Amount Added pg/L		Spike Conc. pg/L	Recovery %	Acceptance Limits	RPD %	Acceptance Limits
2051-60-7	LCSD	1-MoCB	500		559	112	50-150	0.164	0-20
2051-62-9	LCSD	3-MoCB	500		649	130	50-150	4.71	0-20
13029-08-8	LCSD	4-DiCB	500		454	90.8	50-150	9.22	0-20
2050-68-2	LCSD	15-DiCB	500		620	124	50-150	1.28	0-20
38444-73-4	LCSD	19-TrCB	500		574	115	50-150	3.50	0-20
38444-90-5	LCSD	37-TrCB	500		581	116	50-150	1.85	0-20
15968-05-5	LCSD	54-TeCB	1000		1040	104	50-150	1.93	0-20
32598-13-3	LCSD	77-TeCB	1000		1120	112	50-150	0.794	0-20
70362-50-4	LCSD	81-TeCB	1000		898	89.8	50-150	0.305	0-20
56558-16-8	LCSD	104-PeCB	1000		1130	113	50-150	0.165	0-20
32598-14-4	LCSD	105-PeCB	1000		964	96.4	50-150	4.75	0-20
74472-37-0	LCSD	114-PeCB	1000		1210	121	50-150	0.734	0-20
31508-00-6	LCSD	118-PeCB	1000		1220	122	50-150	6.58	0-20
65510-44-3	LCSD	123-PeCB	1000		1100	110	50-150	0.808	0-20
57465-28-8	LCSD	126-PeCB	1000		1170	117	50-150	0.300	0-20
33979-03-2	LCSD	155-HxCB	1000		1130	113	50-150	0.928	0-20
38380-08-4	LCSD	156-HxCB	2000	С	2350	118	50-150	0.388	0-20
69782-90-7	LCSD	157-HxCB		C156					
52663-72-6	LCSD	167-HxCB	1000		1080	108	50-150	1.35	0-20
32774-16-6	LCSD	169-HxCB	1000		1200	120	50-150	0.752	0-20
74487-85-7	LCSD	188-HpCB	1000		1120	112	50-150	0.836	0-20
39635-31-9	LCSD	189-HpCB	1000		1170	117	50-150	1.05	0-20
2136-99-4	LCSD	202-OcCB	1500		1640	109	50-150	1.04	0-20
74472-53-0	LCSD	205-OcCB	1500		1590	106	50-150	0.820	0-20
40186-72-9	LCSD	206-NoCB	1500		1560	104	50-150	0.313	0-20
52663-77-1	LCSD	208-NoCB	1500		1710	114	50-150	0.298	0-20

1500

2051-24-3

LCSD

209-DeCB

Method Blank Summary

Page	1	of	1
------	---	----	---

SDG Number:	2010C61	Client:	HALL001	Matrix:	WATER
Client ID:	MB for batch 45451	Instrument ID:	HRP875	Data File:	d27nov20a_2-5
Lab Sample ID:	12028047	Prep Date:	26-NOV-20	Analyzed:	11/27/20 23:03
Column:					

This method blank applies to the following samples and quality control samples:

Client Sample ID	Lab Sample ID	File ID	Date Analyzed	Time Analyzed
01 LCS for batch 45451	12028048	d27nov20a_2-3	11/27/20	2044
02 LCSD for batch 45451	12028049	d27nov20a_2-4	11/27/20	2153
03 2010C61-001G RG-North-20201026	17326001	d27nov20a_2-6	11/28/20	0012
04 2010C61-003G RG-South-20201028	17326002	d27nov20a_2-7	11/28/20	0122

		Certifi	3 Congeners cate of Analysis ple Summary			Page 1	of 8
SDG Number: Lab Sample ID: Client Sample:	2010C61 : 12028047 QC for batch 45451	Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID:	MB for batch 45451 45453	Method:	EPA Method 1668A		Prep Basis:	As Received	
Run Date:	11/27/2020 23:03	Analyst:	MJC		Instrument:	HRP875	
Data File: Prep Batch: Prep Date:	d27nov20a_2-5 45451 26-NOV-20	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Dilution: Prep SOP Ref:	1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
2051-60-7 1-	MoCB	U	ND	pg/L	5.68	100	
2051-61-8 2-	MoCB	U	ND	pg/L	5.62	100	
2051-62-9 3-	MoCB	U	ND	pg/L	4.62	100	
13029-08-8 4-	DiCB	U	ND	pg/L	21.3	100	
16605-91-7 5-	DiCB	U	ND	pg/L	10.5	100	
25569-80-6 6-	DiCB	U	ND	pg/L	9.36	100	
33284-50-3 7-	DiCB	U	ND	pg/L	8.12	100	
34883-43-7 8-	DiCB	U	ND	pg/L	8.12	100	
34883-39-1 9-	DiCB	U	ND	pg/L	11.3	100	
33146-45-1 10)-DiCB	U	ND	pg/L	10.2	100	
2050-67-1 11	-DiCB	J	54.3	pg/L	10.0	100	
2974-92-7 12	2-DiCB	CU	ND	pg/L	9.06	200	
2974-90-5 13	3-DiCB	C12					
	I-DiCB	U	ND	pg/L	10.0	100	
	5-DiCB	U	ND	pg/L	8.48	100	
	5-TrCB	U	ND	pg/L	3.44	100	
	7-TrCB	U	ND	pg/L	3.86	150	
	3-TrCB	CU	ND	pg/L	3.48	200	
	0-TrCB	U	ND	pg/L	4.88	100	
)-TrCB	CJ	5.58	pg/L	2.60	200	
	-TrCB	CJ	3.94	pg/L	2.70	200	
	2-TrCB	U	ND	pg/L	3.08	100	
	3-TrCB	U	ND	pg/L	2.52	100	
	I-TrCB	U	ND	pg/L	2.84	100	
	5-TrCB	U	ND	pg/L	2.30	100	
	5-TrCB	CU	ND	pg/L	2.80	200	
	7-TrCB	U	ND	pg/L	3.00	100	
	3-TrCB	C20					
	0-TrCB	C26					
)-TrCB	C18		_			
	-TrCB	J	6.32	pg/L	2.66	100	
38444-77-8 32	2-TrCB	U	ND	pg/L	2.68	100	

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certifi	3 Congeners cate of Analysis ple Summary			Page 2	of 8
SDG Number: Lab Sample ID: Client Sample:	2010C61 12028047 QC for batch 45451	Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID:	MB for batch 45451 45453	Method:	EPA Method 1668A		Prep Basis:	As Received HRP875	
Run Date: Data File: Prep Batch: Prep Date:	11/27/2020 23:03 d27nov20a_2-5 45451 26-NOV-20	Analyst: Prep Method: Prep Aliquot:	MJC SW846 3520C 1000 mL		Instrument: Dilution: Prep SOP Ref:	HKP875 1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
	-TrCB	C21	10500			- 22	
	-TrCB	U	ND	pg/L	3.04	100	
	-TrCB	U	ND	pg/L	3.06	100	
	-TrCB	U	ND	pg/L	2.94	100	
	-TrCB	U	ND	pg/L	2.94	100	
	-TrCB	U	ND	pg/L	3.02	100	
	-TrCB	U	ND	pg/L	2.48	100	
	-TeCB	CJ	3.78	pg/L	3.36	200	
	-TeCB	U	ND	pg/L	5.54	150	
	-TeCB	U	ND	pg/L	3.88	150	
	-TeCB	U	ND	pg/L	3.90	100	
	-TeCB	CJ	11.1	pg/L	3.50	300	
	-TeCB	CU	ND	pg/L	2.68	200	
	-TeCB	U	ND	pg/L	2.92	100	
	-TeCB	C44		10			
	-TeCB	U	ND	pg/L	3.70	150	
	-TeCB	CJ	5.84	pg/L	3.44	200	
	-TeCB	CU	ND	pg/L	2.56	200	
	-TeCB	C45		10			
	-TeCB	J	14.7	pg/L	4.32	200	
	-TeCB	C50					
	-TeCB	U	ND	pg/L	2.26	100	
	-TeCB	U	ND	pg/L	2.84	100	
	-TeCB	J	4.10	pg/L	2.96	100	
	-TeCB	U	ND	pg/L	3.12	100	
	-TeCB	U	ND	pg/L	2.84	100	
	-TeCB	CU	ND	pg/L	3.02	300	
	-TeCB	U	ND	pg/L	3.20	100	
	-TeCB	CJ	14.5	pg/L	2.82	400	
	-TeCB	C59		-			
	-TeCB	U	ND	pg/L	3.06	100	
	-TeCB	U	ND	pg/L	2.82	100	

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certifie	3 Congeners cate of Analysis ple Summary			Page 3	of 8
SDG Number Lab Sample II Client Sample	D: 12028047	Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID:	MB for batch 45451				Prep Basis:	As Received	
Batch ID: Run Date: Data File:	45453 11/27/2020 23:03 d27nov20a_2-5	Method: Analyst:	EPA Method 1668A MJC		Instrument: Dilution:	HRP875 1	
Prep Batch: Prep Date:	45451 26-NOV-20	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
33284-54-7	65-TeCB	C44					
	66-TeCB	J	8.96	pg/L	3.20	200	
73575-53-8	67-TeCB	U	ND	pg/L	2.60	100	
	68-TeCB	U	ND	pg/L	2.50	100	
	69-TeCB	C49					
	70-TeCB	C61					
	71-TeCB	C40		~	• • •		
	72-TeCB	U	ND	pg/L	3.00	100	
	73-TeCB	U	ND	pg/L	3.00	100	
	74-TeCB	C61 C59					
	75-TeCB 76-TeCB	C61					
	77-TeCB	U	ND	pg/L	3.08	100	
	78-TeCB	U	ND	pg/L pg/L	3.50	100	
	79-TeCB	U	ND	pg/L	2.84	100	
	80-TeCB	U	ND	pg/L	2.68	100	
	81-TeCB	U	ND	pg/L	3.10	100	
	82-PeCB	U	ND	pg/L	5.08	100	
	83-PeCB	U	ND	pg/L	5.76	100	
52663-60-2	84-PeCB	U	ND	pg/L	4.38	100	
65510-45-4	85-PeCB	CU	ND	pg/L	3.86	300	
55312-69-1	86-PeCB	CJ	9.66	pg/L	3.66	600	
38380-02-8	87-PeCB	C86					
55215-17-3	88-PeCB	CU	ND	pg/L	4.20	200	
73575-57-2	89-PeCB	U	ND	pg/L	5.20	150	
68194-07-0	90-PeCB	CJ	9.36	pg/L	3.70	300	
68194-05-8	91-PeCB	C88					
52663-61-3	92-PeCB	U	ND	pg/L	4.92	100	
73575-56-1	93-PeCB	CU	ND	pg/L	3.84	200	
73575-55-0	94-PeCB	U	ND	pg/L	3.94	100	
	95-PeCB	J	8.40	pg/L	4.76	100	
73575-54-9	96-PeCB	U	ND	pg/L	2.36	150	

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		PCB Congeners Certificate of Analysis Sample Summary						
SDG Number:2010C61Lab Sample ID:12028047Client Sample:QC for batch 45451		Client:	HALL001		Project: Matrix:	HALL00113 WATER		
Client ID: Batch ID: Run Date: Data File:	MB for batch 45451 45453 11/27/2020 23:03 d27nov20a_2-5	Method: Analyst:	EPA Method 1668A MJC		Prep Basis: Instrument: Dilution:	As Received HRP875 1		
Prep Batch: Prep Date:	45451 26-NOV-20	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Prep SOP Ref:	CF-OA-E-001		
CAS No.	Parmname	Qual	Result	Units	EDL	PQL		
41464-51-1 9	07-PeCB	C86						
60233-25-2 9	98-PeCB	CU	ND	pg/L	3.88	200		
38380-01-7 9	99-PeCB	J	5.18	pg/L	3.48	100		
39485-83-1 1	00-PeCB	C93						
37680-73-2 1	01-PeCB	C90						
68194-06-9 1	02-PeCB	C98						
60145-21-3 1	03-PeCB	U	ND	pg/L	4.28	100		
56558-16-8 1	04-PeCB	U	ND	pg/L	2.00	200		
32598-14-4 1	05-PeCB	U	ND	pg/L	3.32	150		
70424-69-0 1	06-PeCB	U	ND	pg/L	3.44	100		
70424-68-9 1	07-PeCB	U	ND	pg/L	2.66	100		
70362-41-3 1	08-PeCB	CU	ND	pg/L	3.02	200		
74472-35-8 1	09-PeCB	C86						
38380-03-9 1	10-PeCB	CJ	11.0	pg/L	2.98	200		
39635-32-0 1	11-PeCB	U	ND	pg/L	2.90	100		
74472-36-9 1	12-PeCB	U	ND	pg/L	2.98	100		
68194-10-5 1	13-PeCB	C90						
74472-37-0 1	14-PeCB	U	ND	pg/L	3.18	100		
74472-38-1 1	15-PeCB	C110						
18259-05-7 1	16-PeCB	C85						
68194-11-6 1	17-PeCB	C85						
31508-00-6 1	18-PeCB	U	ND	pg/L	10.2	100		
56558-17-9 1	19-PeCB	C86						
68194-12-7 1	20-PeCB	U	ND	pg/L	3.36	100		
56558-18-0 1	21-PeCB	U	ND	pg/L	2.84	100		
76842-07-4 1	22-PeCB	U	ND	pg/L	4.18	100		
65510-44-3 1	23-PeCB	U	ND	pg/L	3.08	100		
70424-70-3 1	24-PeCB	C108						
74472-39-2 1	25-PeCB	C86						
57465-28-8 1	26-PeCB	U	ND	pg/L	3.50	100		
39635-33-1 1	27-PeCB	U	ND	pg/L	3.34	100		
38380-07-3 1	28-HxCB	CU	ND	pg/L	3.02	200		

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certifi	B Congeners cate of Analysis ple Summary		Page 5	of 8	
SDG Number: Lab Sample ID: Client Sample:	2010C61 12028047 QC for batch 45451	Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID: MB for batch 45451 Batch ID: 45453 Run Date: 11/27/2020 23:03		Method: Analyst:	EPA Method 1668A MJC		Prep Basis: Instrument:	As Received HRP875	
Data File: Prep Batch: Prep Date:	d27nov20a_2-5 45451 26-NOV-20	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Dilution: Prep SOP Ref:	1 CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
55215-18-4 129	9-HxCB	CU	ND	pg/L	7.72	300	
52663-66-8 130	0-HxCB	U	ND	pg/L	3.92	100	
61798-70-7 131	1-HxCB	U	ND	pg/L	3.66	100	
38380-05-1 132	2-HxCB	U	ND	pg/L	3.36	100	
	3-HxCB	U	ND	pg/L	3.86	100	
	4-HxCB	U	ND	pg/L	3.86	150	
	5-HxCB	CJ	3.16	pg/L	2.16	200	
	6-HxCB	U	ND	pg/L	1.76	100	
	7-HxCB	U	ND	pg/L	3.22	150	
	8-HxCB	C129		_			
	9-HxCB	CU	ND	pg/L	3.08	200	
	0-HxCB	C139		~	2.24	100	
	1-HxCB	U	ND	pg/L	3.24	100	
	2-HxCB	U	ND	pg/L	4.02	150	
	3-HxCB 4-HxCB	U U	ND ND	pg/L	3.82 2.28	100 100	
	5-HxCB	U	ND	pg/L pg/L	1.50	100	
	5-HxCB	U	ND	pg/L pg/L	3.08	100	
	7-HxCB	CJ	3.76	pg/L	3.06	200	
	8-HxCB	U	ND	pg/L pg/L	2.20	100	
	9-HxCB	C147		P 6/ 12	2.20		
	0-HxCB	U	ND	pg/L	1.44	100	
	1-HxCB	C135		10			
	2-HxCB	U	ND	pg/L	1.76	100	
	3-HxCB	CJ	6.66	pg/L	2.72	200	
	4-HxCB	U	ND	pg/L	1.80	100	
33979-03-2 155	5-HxCB	U	ND	pg/L	1.32	100	
38380-08-4 156	6-HxCB	CU	ND	pg/L	3.58	200	
69782-90-7 157	7-HxCB	C156					
74472-42-7 158	8-HxCB	U	ND	pg/L	2.40	100	
39635-35-3 159	9-HxCB	U	ND	pg/L	1.76	100	
41411-62-5 160	0-HxCB	U	ND	pg/L	2.52	100	

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certifie	8 Congeners cate of Analysis ple Summary			Page 6	of 8
SDG Number Lab Sample D Client Sample	D: 12028047	Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID:	MB for batch 45451 45453	Method:	EPA Method 1668A		Prep Basis:	As Received	
Run Date: Data File:	11/27/2020 23:03 d27nov20a_2-5	Analyst:	MJC		Instrument: Dilution:	HRP875 1	
Prep Batch: Prep Date:	45451 26-NOV-20	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
74472-43-8	161-HxCB	U	ND	pg/L	2.74	100	
	162-HxCB	U	ND	pg/L	1.60	100	
	163-HxCB	C129					
	164-HxCB	U	ND	pg/L	2.60	100	
	165-HxCB	U	ND	pg/L	2.58	100	
	166-HxCB	C128			1.50	100	
	167-HxCB	U	ND	pg/L	1.72	100	
	168-HxCB	C153 U	ND	no/I	1.09	100	
	169-НхСВ 170-НрСВ	U	ND ND	pg/L pg/L	1.98 2.76	100	
	171-НрСВ	CU	ND	pg/L pg/L	2.76	200	
	172-НрСВ	U	ND	pg/L pg/L	2.80	100	
	173-НрСВ	C171		r <i>8</i>			
	174-HpCB	U	ND	pg/L	2.54	100	
	175-HpCB	U	ND	pg/L	2.22	100	
52663-65-7	176-HpCB	U	ND	pg/L	1.74	100	
52663-70-4	177-НрСВ	U	ND	pg/L	2.76	100	
52663-67-9	178-HpCB	U	ND	pg/L	2.42	100	
52663-64-6	179-HpCB	U	ND	pg/L	1.68	100	
35065-29-3	180-HpCB	CU	ND	pg/L	2.20	200	
74472-47-2	181-HpCB	U	ND	pg/L	2.38	100	
60145-23-5	182-HpCB	U	ND	pg/L	2.12	100	
52663-69-1	183-HpCB	CU	ND	pg/L	2.42	200	
	184-HpCB	U	ND	pg/L	1.50	100	
	185-HpCB	C183					
	186-HpCB	U	ND	pg/L	1.60	100	
	187-HpCB	J	3.02	pg/L	1.90	100	
	188-HpCB	U	ND	pg/L	1.68	150	
	189-HpCB	U	ND	pg/L	2.10	100	
	190-HpCB	U	ND	pg/L	2.10	100	
	191-HpCB	U	ND	pg/L	2.06	100	
74472-51-8	192-HpCB	U	ND	pg/L	2.02	100	

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		Certifie	B Congeners cate of Analysis ple Summary		Page 7	of 8	
SDG Numbe Lab Sample Client Sampl	ID: 12028047	Client:	HALL001		Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date: Data File:	MB for batch 45451 45453 11/27/2020 23:03 d27nov20a_2-5	Method: EPA Method 1668A Analyst: MJC			Prep Basis: Instrument: Dilution:	As Received HRP875 1	
Prep Batch: Prep Date:	45451 26-NOV-20	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Prep SOP Ref:	CF-OA-E-001	
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
69782-91-8	193-НрСВ	C180					
35694-08-7	194-OcCB	U	ND	pg/L	2.12	100	
52663-78-2	195-OcCB	U	ND	pg/L	2.28	100	
42740-50-1	196-OcCB	U	ND	pg/L	1.86	100	
33091-17-7	197-OcCB	CU	ND	pg/L	1.36	200	
68194-17-2	198-OcCB	CU	ND	pg/L	1.84	200	
52663-75-9	199-OcCB	C198					
52663-73-7	200-OcCB	C197					
40186-71-8	201-OcCB	U	ND	pg/L	1.36	100	
2136-99-4	202-OcCB	U	ND	pg/L	1.44	100	
52663-76-0	203-OcCB	U	ND	pg/L	1.58	100	
74472-52-9	204-OcCB	U	ND	pg/L	1.40	100	
74472-53-0	205-OcCB	U	ND	pg/L	1.80	100	
40186-72-9	206-NoCB	U	ND	pg/L	3.92	100	
52663-79-3	207-NoCB	U	ND	pg/L	3.00	100	
52663-77-1	208-NoCB	U	ND	pg/L	2.96	100	
2051-24-3	209-DeCB	U	ND	pg/L	2.38	100	
1336-36-3	Total PCB Congeners	J	194	pg/L		100	

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1-MoCB		754	2000	pg/L	37.7	(15%-150%)
13С-3-МоСВ		887	2000	pg/L	44.4	(15%-150%)
13C-4-DiCB		918	2000	pg/L	45.9	(25%-150%)
13C-15-DiCB		1330	2000	pg/L	66.3	(25%-150%)
13C-19-TrCB		1080	2000	pg/L	54.0	(25%-150%)
13C-37-TrCB		1170	2000	pg/L	58.3	(25%-150%)
13C-54-TeCB		958	2000	pg/L	47.9	(25%-150%)
13C-77-TeCB		1350	2000	pg/L	67.7	(25%-150%)
13C-81-TeCB		1360	2000	pg/L	67.9	(25%-150%)
13C-104-PeCB		1050	2000	pg/L	52.6	(25%-150%)
13C-105-PeCB		1320	2000	pg/L	65.8	(25%-150%)
13C-114-PeCB		1290	2000	pg/L	64.3	(25%-150%)
13C-118-PeCB		1280	2000	pg/L	63.9	(25%-150%)
13C-123-PeCB		1350	2000	pg/L	67.5	(25%-150%)
13C-126-PeCB		1440	2000	pg/L	72.0	(25%-150%)
13C-155-HxCB		1080	2000	pg/L	53.9	(25%-150%)
13C-156-HxCB	С	2500	4000	pg/L	62.5	(25%-150%)
13C-157-HxCB	C156L					
13C-167-HxCB		1300	2000	pg/L	64.8	(25%-150%)
13C-169-HxCB		1390	2000	pg/L	69.4	(25%-150%)
13С-188-НрСВ		1150	2000	pg/L	57.6	(25%-150%)
13С-189-НрСВ		1300	2000	pg/L	65.1	(25%-150%)

		ate of Analysis			
		ole Summary			
2010C61 12028047	Client:	HALL001		Project: Matrix:	HALL00113 WATER
MB for batch 45451	Mathadi	FDA Mathad 1668A		Prep Basis:	As Received
1/27/2020 23:03 127nov20a_2-5	Analyst:	MJC		Instrument: Dilution:	HRP875 1
15451 26-NOV-20	Prep Method: Prep Aliquot:	SW846 3520C 1000 mL		Prep SOP Ref:	CF-OA-E-001
Parmname	Qual	Result	Units	EDL	PQL
	2028047 9C for batch 45451 IB for batch 45451 5453 1/27/2020 23:03 27nov20a_2-5 5451 6-NOV-20	2028047 9C for batch 45451 1B for batch 45451 5453 Method: 1/27/2020 23:03 Analyst: 27nov20a_2-5 5451 Prep Method: 6-NOV-20 Prep Aliquot:	2028047 9C for batch 45451 1B for batch 45451 5453 Method: 1/27/2020 23:03 Analyst: 27nov20a_2-5 5451 Prep Method: 5451 Prep Method: 6-NOV-20 Prep Aliquot:	2028047 9C for batch 45451 IB for batch 45451 5453 Method: EPA Method 1668A 1/27/2020 23:03 Analyst: MJC 27nov20a_2-5 5451 Prep Method: 5451 Prep Method: 6-NOV-20 Prep Aliquot:	2028047 Matrix: 9C for batch 45451 Prep Basis: 1B for batch 45451 Prep Basis: 5453 Method: EPA Method 1668A 1/27/2020 23:03 Analyst: MJC 27nov20a_2-5 Dilution: 5451 Prep Method: SW846 3520C 5451 Prep Aliquot: 1000 mL

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits	
13C-202-OcCB		1170	2000	pg/L	58.5	(25%-150%)	
13C-205-OcCB		1360	2000	pg/L	68.2	(25%-150%)	
13C-206-NoCB		1430	2000	pg/L	71.4	(25%-150%)	
13C-208-NoCB		1240	2000	pg/L	61.8	(25%-150%)	
13C-209-DeCB		1340	2000	pg/L	66.9	(25%-150%)	
13C-28-TrCB		1370	2000	pg/L	68.7	(30%-135%)	
13C-111-PeCB		1480	2000	pg/L	74.1	(30%-135%)	
13C-178-HpCB		1610	2000	pg/L	80.6	(30%-135%)	

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

J Value is estimated

		PCE	6 Congeners	Page 1 of 2			
			cate of Analysis				
		Samj	ple Summary				
SDG Number: Lab Sample II		Client:		Project: Matrix:	HALL00113 WATER		
Client Sample					man ix.	WITTER	
Client ID:	LCS for batch 45451				Prep Basis:	As Received	
Batch ID:	45453	Method:	EPA Method 1668A		Instrument:	HRP875	
Run Date: Data File:	11/27/2020 20:44 d27nov20a_2-3	Analyst:	MJC		Dilution:	1	
Prep Batch:	45451	Prep Method:	SW846 3520C		Prep SOP Ref:	CF-OA-E-001	
Prep Date:	26-NOV-20	Prep Aliquot:	1000 mL				
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
2051-60-7	1-MoCB		560	pg/L	6.24	100	
2051-62-9	3-MoCB		619	pg/L	5.66	100	
13029-08-8	4-DiCB		498	pg/L	19.0	100	
2050-68-2	15-DiCB		612	pg/L	9.00	100	
38444-73-4	19-TrCB		554	pg/L	5.14	100	
38444-90-5	37-TrCB		591	pg/L	7.02	100	
	54-TeCB		1060	pg/L	2.04	100	
32598-13-3	77-TeCB		1130	pg/L	7.64	100	
70362-50-4	81-TeCB		896	pg/L	7.40	100	
56558-16-8	104-PeCB		1130	pg/L	1.66	200	
	105-PeCB		1010	pg/L	8.60	150	
	114-PeCB		1220	pg/L	8.40	100	
	118-PeCB		1310	pg/L	8.14	100	
	123-PeCB		1090	pg/L	7.88	100	
	126-PeCB		1170	pg/L	9.20	100	
	155-HxCB		1120	pg/L	1.34	100	
	156-HxCB	С	2340	pg/L	9.40	200	
	157-HxCB	C156		~			
	167-HxCB		1100	pg/L	6.52	100	
	169-HxCB		1190	pg/L	7.60	100	
	188-HpCB		1130	pg/L	1.74	150	
	189-HpCB		1160	pg/L	3.48	100	
	202-OcCB		1660	pg/L	1.88	100	
	205-OcCB		1600	pg/L	2.88	100	
	206-NoCB		1560	pg/L	3.72	100	
	208-NoCB		1720	pg/L	2.92	100	
2051-24-3	209-DeCB		1650	pg/L	2.22	100	

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1-MoCB		837	2000	pg/L	41.8	(15%-140%)
13C-3-MoCB		928	2000	pg/L	46.4	(15%-140%)
13C-4-DiCB		966	2000	pg/L	48.3	(30%-140%)
13C-15-DiCB		1300	2000	pg/L	64.8	(30%-140%)
13C-19-TrCB		1110	2000	pg/L	55.5	(30%-140%)
13C-37-TrCB		1270	2000	pg/L	63.3	(30%-140%)
13C-54-TeCB		1070	2000	pg/L	53.7	(30%-140%)
13C-77-TeCB		1490	2000	pg/L	74.7	(30%-140%)
13C-81-TeCB		1500	2000	pg/L	75.2	(30%-140%)
13C-104-PeCB		1180	2000	pg/L	58.9	(30%-140%)
13C-105-PeCB		1500	2000	pg/L	74.8	(30%-140%)
13C-114-PeCB		1460	2000	pg/L	72.8	(30%-140%)
13C-118-PeCB		1460	2000	pg/L	72.8	(30%-140%)

(30%-140%)

(40% - 125%)

(40%-125%)

(40%-125%)

Cape rear An	aiyiicai LLC							Report Date:	December 7, 2020
			PCB Congeners Certificate of Analysis Sample Summary					Page 2	of 2
SDG Number: Lab Sample ID: Client Sample:	2010C61 12028048 QC for batch 45451	Clie	Client: HALL001				Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date: Data File: Prep Batch: Prep Date:	LCS for batch 45451 45453 11/27/2020 20:44 d27nov20a_2-3 45451 26-NOV-20	Ana Prej	Method: EPA Method 1668A Analyst: MJC Prep Method: SW846 3520C Prep Aliquot: 1000 mL		Prep Basis: Instrument: Dilution: Prep SOP Ref:		As Received HRP875 1 CF-OA-E-001		
CAS No.	Parmname	-	Qual	Result		Units	EDL	PQL	
Surrogate/Trace	r recovery	Qual	Result	Nominal	Units	Recovery%	% Acceptable	e Limits	
13C-123-PeCB			1530	2000	pg/L	76.3	(30%-14	40%)	
13C-126-PeCB			1630	2000	pg/L	81.6	(30%-14	40%)	
13C-155-HxCB			1200	2000	pg/L	60.0	(30%-14	40%)	
13C-156-HxCB		С	2910	4000	pg/L	72.8	(30%-14	40%)	
13C-157-HxCB		C156L							
13C-167-HxCB			1490	2000	pg/L	74.6	(30%-14	40%)	
13C-169-HxCB			1610	2000	pg/L	80.7	(30%-14	40%)	
13C-188-HpCB			1270	2000	pg/L	63.7	(30%-14	40%)	
13C-189-HpCB			1480	2000	pg/L	73.8	(30%-14	40%)	
13C-202-OcCB			1320	2000	pg/L	65.9	(30%-14	40%)	
13C-205-OcCB			1540	2000	pg/L	77.2	(30%-14	40%)	
13C-206-NoCB			1630	2000	pg/L	81.5	(30%-14	40%)	
13C-208-NoCB			1390	2000	pg/L	69.3	(30%-14	40%)	

1520

1380

1520

1670

2000

2000

2000

2000

pg/L

pg/L

pg/L

pg/L

76.1

68.9

76.1

83.5

13C-178-HpCB Comments:

13C-209-DeCB

13C-28-TrCB

13C-111-PeCB

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

		PCE	Congeners			Page 1	of 2
			cate of Analysis				
		Samj	ple Summary				
SDG Number:	2010C61	Client:	HALL001		Project:	HALL00113	
Lab Sample ID					Matrix:	WATER	
Client Sample:							
Client ID: Batch ID:	LCSD for batch 45451 45453	Method:	EPA Method 1668A		Prep Basis:	As Received	
Run Date:	11/27/2020 21:53	Analyst:	MJC		Instrument:	HRP875	
Data File:	d27nov20a_2-4	·			Dilution:	1	
Prep Batch:	45451	Prep Method:	SW846 3520C		Prep SOP Ref:	CF-OA-E-001	
Prep Date:	26-NOV-20	Prep Aliquot:	1000 mL				
CAS No.	Parmname	Qual	Result	Units	EDL	PQL	
2051-60-7 1	1-MoCB		559	pg/L	15.1	100	
	3-MoCB		649	pg/L	12.4	100	
	4-DiCB		454	pg/L	35.3	100	
	15-DiCB		620	pg/L	17.5	100	
	19-TrCB		574	pg/L	22.9	100	
	37-TrCB		581	pg/L	15.2	100	
	54-TeCB		1040	pg/L	5.40	100	
	77-TeCB		1120	pg/L	12.4	100	
	81-TeCB		898	pg/L	11.7	100	
	104-PeCB		1130	pg/L	3.50	200	
	105-PeCB		964	pg/L	11.7	150	
	114-PeCB		1210	pg/L	11.6	100	
	118-PeCB		1220	pg/L	11.4	100	
	123-PeCB		1100	pg/L	10.9	100	
	126-PeCB		1170	pg/L	12.3	100	
	155-HxCB	a	1130	pg/L	2.12	100	
	156-HxCB	C	2350	pg/L	12.2	200	
	157-HxCB	C156	1080		9.46	100	
	167-HxCB			pg/L	8.46		
	169-HxCB 188-HpCB		1200 1120	pg/L pg/L	9.80 2.86	100 150	
	189-НрСВ		1120	pg/L pg/L	2.80 5.44	100	
	202-ОсСВ		1640	pg/L pg/L	3.44	100	
	202-OCCB 205-OcCB		1590	pg/L pg/L	4.04	100	
	205-OCCB 206-NoCB		1560	pg/L pg/L	4.04 8.04	100	
	208-NoCB		1710	pg/L pg/L	8.04 5.70	100	
	209-DeCB		1660	pg/L pg/L	3.62	100	
2051-24-5 2	207 DOCD		1000	Pg/L	5.02	100	

Surrogate/Tracer recovery	Qual	Result	Nominal	Units	Recovery%	Acceptable Limits
13C-1-MoCB		828	2000	pg/L	41.4	(15%-140%)
13С-3-МоСВ		935	2000	pg/L	46.8	(15%-140%)
13C-4-DiCB		986	2000	pg/L	49.3	(30%-140%)
13C-15-DiCB		1250	2000	pg/L	62.7	(30%-140%)
13C-19-TrCB		1100	2000	pg/L	54.9	(30%-140%)
13C-37-TrCB		1250	2000	pg/L	62.3	(30%-140%)
13C-54-TeCB		1120	2000	pg/L	56.0	(30%-140%)
13C-77-TeCB		1430	2000	pg/L	71.6	(30%-140%)
13C-81-TeCB		1440	2000	pg/L	72.2	(30%-140%)
13C-104-PeCB		1220	2000	pg/L	60.8	(30%-140%)
13C-105-PeCB		1430	2000	pg/L	71.7	(30%-140%)
13C-114-PeCB		1410	2000	pg/L	70.4	(30%-140%)
13C-118-PeCB		1400	2000	pg/L	70.2	(30%-140%)

13C-202-OcCB

13C-205-OcCB

13C-206-NoCB

13C-208-NoCB

13C-209-DeCB

13C-28-TrCB

13C-111-PeCB

13C-178-HpCB

Comments:

cupe I cui Illi	aryttear BBC							Report Dute.	December 7,20
				B Congene cate of An				Page 2	of 2
				ple Summa	•				
SDG Number: Lab Sample ID: Client Sample:	2010C61 12028049 QC for batch 45451	Clie	nt:	HALL001			Project: Matrix:	HALL00113 WATER	
Client ID: Batch ID: Run Date: Data File: Prep Batch: Prep Date:	LCSD for batch 45451 45453 11/27/2020 21:53 d27nov20a_2-4 45451 26-NOV-20	Ana Prej	hod: lyst: p Method: p Aliquot:	EPA Meth MJC SW846 35 1000 mL			Prep Basis: Instrument: Dilution: Prep SOP Ref:	As Received HRP875 1 CF-OA-E-001	
CAS No.	Parmname		Qual	Result		Units	EDL	PQL	
Surrogate/Trace	r recovery	Qual	Result	Nominal	Units	Recovery?	% Acceptable	e Limits	
13C-123-PeCB			1460	2000	pg/L	73.2	(30%-14	0%)	
13C-126-PeCB			1520	2000	pg/L	76.1	(30%-14	0%)	
13C-155-HxCB			1260	2000	pg/L	63.1	(30%-14	0%)	
13C-156-HxCB		С	2760	4000	pg/L	68.9	(30%-14	0%)	
13C-157-HxCB		C156L							
13C-167-HxCB			1440	2000	pg/L	72.2	(30%-14	0%)	
13C-169-HxCB			1520	2000	pg/L	76.1	(30%-14	0%)	
13C-188-HpCB			1350	2000	pg/L	67.5	(30%-14	0%)	
13C-189-HpCB			1440	2000	pg/L	72.1	(30%-14	0%)	

1360

1560

1670

1430

1580

1360

1490

1660

pg/L

pg/L

pg/L pg/L

pg/L

pg/L

pg/L

pg/L

68.0

78.2

83.3

71.3

79.1

67.9

74.3

82.9

(30%-140%)

(30%-140%)

(30%-140%)

(30%-140%)

(30%-140%)

(40% - 125%)

(40%-125%)

(40%-125%)

2000

2000

2000

2000

2000

2000

2000

2000

C Congener has coeluters. When Cxxx, refer to congener number xxx for data

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

November 20, 2020

Andy Freeman Hall Environmental 4901 Hawkins NE Albuquerque, NM 87109

RE: Project: 2010C61 Pace Project No.: 30390293

Dear Andy Freeman:

Enclosed are the analytical results for sample(s) received by the laboratory on October 30, 2020. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Ser queliplellins

Jacquelyn Collins jacquelyn.collins@pacelabs.com (724)850-5612 Project Manager

Enclosures

cc: Ms. Jackie Ball, Hall Environmental Michelle Garcia, Hall Environmental

Pace Analytical Services, LLC 1638 Roseytown Road - Suites 2,3,4 Greensburg, PA 15601 (724)850-5600

CERTIFICATIONS

 Project:
 2010C61

 Pace Project No.:
 30390293

Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L

SAMPLE SUMMARY

Project: Pace Project No	2010C61 .: 30390293			
Lab ID	Sample ID	Matrix	Date Collected	Date Received
30390293001	2010C61-001I RG-North-20201026	Water	10/26/20 10:50	10/30/20 09:10
30390293002	2010C61-003I RG-South-20201028	Water	10/28/20 14:10	10/30/20 09:10

SAMPLE ANALYTE COUNT

 Project:
 2010C61

 Pace Project No.:
 30390293

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory	_
30390293001	2010C61-001I RG-North-20201026	EPA 900.0	CLA	1	PASI-PA	_
		EPA 900.0	CMC	1	PASI-PA	
		ASTM D5174-97	RMK	1	PASI-PA	
30390293002	2010C61-003I RG-South-20201028	EPA 900.0	CLA	1	PASI-PA	
		EPA 900.0	CMC	1	PASI-PA	
		ASTM D5174-97	RMK	1	PASI-PA	

PASI-PA = Pace Analytical Services - Greensburg

PROJECT NARRATIVE

Project:	2010C61
Pace Project No.:	30390293

Method:	EPA 900.0
Description:	900.0 Gross Alpha/Beta
Client:	Hall Environmental
Date:	November 20, 2020

General Information:

2 samples were analyzed for EPA 900.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

 Project:
 2010C61

 Pace Project No.:
 30390293

Method:	EPA 900.0
Description:	Adjusted Gross Alpha
Client:	Hall Environmental
Date:	November 20, 2020

General Information:

2 samples were analyzed for EPA 900.0 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

 Project:
 2010C61

 Pace Project No.:
 30390293

Method: ASTM D5174-97

Description:D517497 Total Uranium KPAClient:Hall EnvironmentalDate:November 20, 2020

General Information:

2 samples were analyzed for ASTM D5174-97 by Pace Analytical Services Greensburg. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: 2010C61

Pace Project No.: 30390293

Sample:	2010C61-001I RG-North- 20201026	Lab ID: 30390	293001	Collected:	10/26/20 10:50	Received:	10/30/20 09:10	Matrix: Water	
PWS:	20201020	Site ID:		Sample Typ	e:				
	Parameters	Method	Ac	t ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
		Pace Analytical S	ervices -	Greensburg					
Gross Alp	bha	EPA 900.0	0.922 C:NA	± 0.999 (1.9 T:NA	3)	pCi/L	11/17/20 07:3	7 12587-46-1	
		Pace Analytical S	ervices -	Greensburg					
Adjusted	Gross Alpha	EPA 900.0	<mark>0.000</mark> C:NA	<mark>±NA</mark> (NA) T:NA		pCi/L	11/20/20 13:3	4	
		Pace Analytical S	ervices -	Greensburg					
Total Urar	nium	ASTM D5174-97	2.34 ± C:NA	± 0.053 (0.26 . T:NA	52)	ug/L	11/18/20 10:5	6 7440-61-1	
Sample:	2010C61-003I RG-South-	Lab ID: 30390	293002	Collected:	10/28/20 14:10	Received:	10/30/20 09:10	Matrix: Water	
PWS:	20201028	Site ID:		Sample Typ	e:				
	Parameters	Method	Ac	t ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
		Pace Analytical S	ervices -	Greensburg					
Gross Alp	bha	EPA 900.0	4.27 ± C:NA	± 1.89 (2.86) T:NA		pCi/L	11/16/20 18:4	1 12587-46-1	
		Pace Analytical S	ervices -	Greensburg					
Adjusted	Gross Alpha	EPA 900.0	<mark>3.03</mark>	<mark>± NA</mark> (NA) .T:NA		pCi/L	11/20/20 13:3	4	
		Pace Analytical S	ervices -	Greensburg					
Total Urar	nium	ASTM D5174-97	1.83 ± C:NA	± 0.028 (0.26 T:NA	32)	ug/L	11/19/20 15:4	3 7440-61-1	

QUALITY CONTROL - RADIOCHEMISTRY

Pace Project No.: 30390293				
QC Batch: 422619	Analysis Method:	EPA 900.0		
QC Batch Method: EPA 900.0	Analysis Description:	900.0 Gross Alp	ha/Beta	
	Laboratory:	Pace Analytical	Services - Greensbu	rg
Associated Lab Samples: 303902	93001, 30390293002			
METHOD BLANK: 2042725	Matrix: Water			
Associated Lab Samples: 303902	93001, 30390293002			
Parameter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers
Gross Alpha	-0.117 ± 0.635 (1.88) C:NA T:NA	pCi/L	11/17/20 07:26	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL - RADIOCHEMISTRY

Project:	2010C61				
Pace Project No.:	30390293				
QC Batch:	421707	Analysis Method:	ASTM D5174-9	7	
QC Batch Method:	ASTM D5174-97	Analysis Description:	D5174.97 Total	Uranium KPA	
		Laboratory:	Pace Analytical	Services - Greensbu	irg
Associated Lab Sar	mples: 30390293001	30390293002			
METHOD BLANK:	2038256	Matrix: Water			
Associated Lab Sai	mples: 30390293001	30390293002			
Para	neter	Act ± Unc (MDC) Carr Trac	Units	Analyzed	Qualifiers
Total Uranium	0.0	53 ± 0.002 (0.262) C:NA T:NA	ug/L	11/18/20 10:42	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 2010C61 Pace Project No.: 30390293

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYSIS LABORATORY	CHAIN OF CUSTODY REC	CORD 1 OF: 1	Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com
SUB CONTRATOR Pace-Greensburg COMPANY:	Pace Analytical Services, Inc.	PHONE: (724) 850-5600	FAX: (724) 850-5601
1638 Roseytown Rd Ste 2,3,4		ACCOUNT #:	EMAIL:
CITY, STATE, ZIP: Greensburg, PA 15601			
IEM SAMPLE CLIENT SAMPLE ID 1 2010C61-0011 RG-North-20201026	TYPE MATRIX		ANALYTICAL COMMENTS
2 2010C61-0031 RG-South-20201028	2	2020 10:50:00 AM 1 Adjusted Gross Alph: 2020 2:10:00 PM 1 Adjusted Gross Alph:	
	1 a 		JUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
	in all final reports. Please a mail results to lab@ba	llevuicompartal com Diago sotuto all aco	
	m all final reports. Please e-mail results to lab@hai	llenvironmental.com. Please return all cool	lers and blue ice. Thank you.
Please include the LAB ID and the CLIENT SAMPLE ID	<i>2</i> 11 (<i>7</i>	Ilenvironmental.com. Please return all cool Time:	REPORT TRANSMITTAL DESIRED: (extra cost)
10/29/2020 8:56 A	M Received By: TH HE Date: 12.1		REPORT TRANSMITTAL DESIRED: (extra cost)

Pittsburgh Lab Sample Condit	ion l	Jpor	ı Re	eceipt # ₹ 0 ₹ 0 0 0 7	
Pace Analytical' Client Name:	Ha	<u>)) (</u>		# 30390293	
Courier: Fed Ex UPS USPS Client	Ē	omme	rcial	Pace Other Label PM	
Tracking #: 7719 4365 836	5			LIMS Login	
Custody Seal on Cooler/Box Present: Uyes	<u>I</u> n	0	Seals	s intact: yes into	
Thermometer Used N/A	Туре	of ice:	Wet	at Blue None	
Cooler Temperature Observed Temp	_	۰c	Corre	rection Factor: °C Final Temp: °C	
Temp should be above freezing to 6°C		_			
	·····			pH paper Lot# Date and initials of person examining contents: <u>My - 11-</u> 2-20	
Comments:	Yes	No	N/A	100000	
Chain of Custody Present:			-	1.	
Chain of Custody Filled Out:			ļ	2.	
Chain of Custody Relinquished:	\vdash			3.	
Sampler Name & Signature on COC:				4	
Sample Labels match COC:	\leq		1	5. [`]	
-Includes date/time/ID Matrix: tv	-"]				
Samples Arrived within Hold Time:	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $			6	
Short Hold Time Analysis (<72hr remaining):	ļ			7	
Rush Turn Around Time Requested:	ļ,			8.	
Sufficient Volume:				9.	
Correct Containers Used:				10.	
-Pace Containers Used:					
Containers Intact:		L		11.	
Orthophosphate field filtered				12.	
Hex Cr Aqueous sample field filtered		<u> </u>	/	13.	
Organic Samples checked for dechlorination:			1	14.	
Filtered volume received for Dissolved tests			1	15.	
All containers have been checked for preservation.				-16. PHID	
exceptions: VOA, coliform, TOC, O&G, Phenolics, I Non-aqueous matrix	Radon,	I		T PHZ 2	
All containers meet method preservation				Initial when 1/2 Date/time of	
requirements.		L		completed preservation	
				Lot # of added preservative	
Headspace in VOA Vials (>6mm):			1	17.	
Trip Blank Present:			1	18.	
Trlp Blank Custody Seals Present	•	•	1		••
Rad Samples Screened < 0.5 mrem/hr				completed: RM Date: 11-2-20	
Client Notification/ Resolution:					
Person-Contacted:			Date/	/Time:Contacted-By:	
Comments/ Resolution:				·	
	·····				
A check in this box indicates that addit	ional	inform	natior	n has been stored in ereports.	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

*PM review is documented electronically in LIMS. When the Project Manager closes the SRF Review schedule in LIMS. The review is in the Status saction of the Workorder Edit Screen.

J:\QAQC\Master\Document Managemant\Sample Mgt\Sample Condition Upon Receipt Pittsburgh (C056-9 5April2019)

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#: 2010C61 12-Mar-21

Client: AMAFCA **Project:** CMC

inglett. eme			
Sample ID: MB-56126	SampType: MBLK	TestCode: EPA Method	I 1664B
Client ID: PBW	Batch ID: 56126	RunNo: 73108	
Prep Date: 11/3/2020	Analysis Date: 11/4/2020	SeqNo: 2571804	Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
N-Hexane Extractable Material	ND 10.0		
Sample ID: LCS-56126	SampType: LCS	TestCode: EPA Method	I 1664B
Client ID: LCSW	Batch ID: 56126	RunNo: 73108	
Prep Date: 11/3/2020	Analysis Date: 11/4/2020	SeqNo: 2571805	Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
N-Hexane Extractable Material	36.6 10.0 40.00	0 91.5 78	114
Sample ID: LCSD-56126	SampType: LCSD	TestCode: EPA Method	I 1664B
Client ID: LCSS02	Batch ID: 56126	RunNo: 73108	
Prep Date: 11/3/2020	Analysis Date: 11/4/2020	SeqNo: 2571806	Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
N-Hexane Extractable Material	37.4 10.0 40.00	0 93.5 78	114 2.16 20

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 18

Project:	CMC												
Sample ID:	MB-56135	SampT	ype: ME	BLK	Tes	TestCode: EPA Method 200.7: Metals							
Client ID:	PBW	Batch	n ID: 56	135	F	RunNo: 7	3075						
Prep Date:	11/1/2020	Analysis D	ate: 11	1/2/2020	S	SeqNo: 2	569232	Units: mg/L					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Calcium		ND	1.0										
Magnesium		ND	1.0										
Sample ID:	LCSLL-56135	SampT	ype: LC	SLL	Tes	tCode: El	PA Method	200.7: Metals					
Client ID:	BatchQC	Batch	n ID: 56	135	F	RunNo: 7	3075						
Prep Date:	11/1/2020	Analysis D	ate: 11	1/2/2020	S	SeqNo: 2	569237	Units: mg/L					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Calcium		0.52	1.0	0.5000	0	104	50	150			J		
Magnesium		0.52	1.0	0.5000	0	103	50	150			J		
Sample ID:	LCS-56135	SampT	ype: LC	s	Tes	tCode: El	PA Method	200.7: Metals					
Client ID:	LCSW	Batch	n ID: 56	135	F	RunNo: 7	3075						
Prep Date:	11/1/2020	Analysis D	ate: 11	1/2/2020	S	SeqNo: 2	569239	Units: mg/L					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Calcium		48	1.0	50.00	0	96.8	85	115					
Magnesium		49	1.0	50.00	0	98.1	85	115					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 7 of 18

AMAFCA

Client:

AMAFCA

Project:	CMC										
Sample ID:	2010C61-001FMS	Sam	oType: MS	5	Tes	tCode: EF	PA 200.8: [Dissolved Met	als		
-	RG-North-20201026		ch ID: A7		RunNo: 73027						
Prep Date:		Analysis	Date: 10	/29/2020	5	SeqNo: 2	567244	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Copper		0.025	0.0010	0.02500	0.0006224	96.8	70	130			
Lead		0.013	0.00050	0.01250	0	101	70	130			
Sample ID:	2010C61-001FMSD	Sam	oType: MS	D	Tes	tCode: EF	PA 200.8: [Dissolved Met	als		
Client ID:	RG-North-20201026	Bat	ch ID: A7	3027	F	RunNo: 7 3	3027				
Prep Date:		Analysis	Date: 10	/29/2020	S	SeqNo: 25	567245	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Copper		0.025	0.0010		0.0006224	97.3	70	130	0.545	20	
Lead		0.013	0.00050	0.01250	0	100	70	130	0.452	20	
Sample ID:	2010C61-003FMS	Sam	оТуре: МS	;	Tes	tCode: EF	PA 200.8: [Dissolved Met	als		
Client ID:	RG-South-2020102	B Bat	ch ID: A7	3027	F	RunNo: 7 3	3027				
Prep Date:	· · ·	Analysis	Date: 10	/29/2020	S	SeqNo: 25	567247	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Copper		0.026	0.0010		0.0008515	103	70	130			
Lead		0.013	0.00050	0.01250	.00005139	105	70	130			
Sample ID:	MB	Sam	oType: ME	BLK	Tes	tCode: EF	PA 200.8: [Dissolved Met	als		
Client ID:	PBW	Bat	ch ID: A7	3027	F	RunNo: 7 3	3027				
Prep Date:	· · ·	Analysis	Date: 10	/29/2020	S	SeqNo: 25	567267	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Copper		ND	0.0010								
Lead		ND	0.00050								
Sample ID:	LLLCS	Sam	оТуре: LC	SLL	Tes	tCode: EF	PA 200.8: [Dissolved Met	als		
Client ID:	BatchQC	Bat	ch ID: A7	3027	F	RunNo: 7 :	3027				
Prep Date:	· · ·	Analysis	Date: 10	/29/2020	S	SeqNo: 25	567268	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Copper		0.0011	0.0010	0.001000	0	110	50	150			
Lead		0.00055	0.00050	0.0005000	0	111	50	150			
Sample ID:	LCS	Sam	oType: LC	S	Tes	tCode: EF	PA 200.8: [Dissolved Met	als		
Client ID:	LCSW	Bat	ch ID: A7	3027	F	RunNo: 7 3	3027				
Prep Date:	· · · · · · · · · · · · · · · · · · ·	Analysis	Date: 10	/29/2020	S	SeqNo: 25	567269	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Qualifiers:

Client:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit

ND PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL

Reporting Limit

Page 8 of 18

Client:AMAFCAProject:CMC

Sample ID: LCS	Samp	Type: LC	s	Tes						
Client ID: LCSW	Bate	ch ID: A7:	3027	RunNo: 73027						
Prep Date:	Analysis	Date: 10	/29/2020	S	eqNo: 2	567269	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Copper	0.024	0.0010	0.02500	0	96.8	85	115			
_ead	0.013	0.00050	0.01250	0	102	85	115			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 18

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#: 2010C61 12-Mar-21

Client: Project:	AMAFCA CMC										
Sample ID: MB		SampT	ype: m t	olk	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID: PBW		Batch	ID: R7	3035	RunNo: 73035						
Prep Date:	A	nalysis D	ate: 10)/29/2020	5	SeqNo: 2	567522	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Nitrite (As N)		ND	0.10								
Nitrogen, Nitrate (As N)		ND	0.10								
Sample ID: LCS		SampT	ype: Ics	5	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID: LCSW	1	Batch	ID: R7	3035	F	RunNo: 7 :	3035				
Prep Date:	A	nalysis D	ate: 10)/29/2020	S	SeqNo: 2	567527	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Nitrite (As N)		0.95	0.10	1.000	0	95.2	90	110			
Nitrogen, Nitrate (As N)		2.5	0.10	2.500	0	98.1	90	110			
Sample ID: 2010C	61-001AMS	SampT	ype: ms	3	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID: RG-No	orth-20201026	Batch	ID: R7	3232	F	RunNo: 7	3232				
Prep Date:	A	nalysis D	ate: 11	1/9/2020	S	SeqNo: 2	576829	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrate+Nitrite as N		16	1.0	17.50	0.3440	88.8	85.4	110			
Sample ID: MB		SampT	ype: mt	olk	Tes	tCode: El	PA Method	300.0: Anions	;		
Client ID: PBW		Batch	ID: R7	3232	F	RunNo: 7	3232				
Prep Date:	А	nalysis D	ate: 11	1/9/2020	S	SeqNo: 2	576834	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrate+Nitrite as N		ND	0.20								
Sample ID: LCS		SampT	ype: Ics	5	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID: LCSW	,	Batch	ID: R7	3232	F	RunNo: 7	3232				
Prep Date:	A	nalysis D	ate: 11	1/9/2020	S	SeqNo: 2	576836	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrate+Nitrite as N		3.3	0.20	3.500	0	94.0	90	110			
Sample ID: 2010C	61-001AMSD	SampT	ype: ms	sd	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID: RG-No	orth-20201026	Batch	ID: R7	3232	F	RunNo: 7	3232				
Prep Date:	A	nalysis D	ate: 11	1/9/2020	S	SeqNo: 2	576857	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
					-						

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 10 of 18

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc

WO#:	2010C61
	12-Mar-21

Client: AMAF Project: CMC	ĊĊĂ									
Sample ID: MB-56166	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8081: PESTI	CIDES		
Client ID: PBW	Batch	h ID: 56	166	F	RunNo: 7	3124				
Prep Date: 11/3/2020	Analysis D	Date: 11	1/4/2020	S	SeqNo: 2	571220	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Dieldrin	ND	0.10								
Surr: Decachlorobiphenyl	1.5		2.500		59.2	38.2	102			
Surr: Tetrachloro-m-xylene	1.5		2.500		59.5	32.3	92.4			
Sample ID: LCS-56166	SampT	ype: LC	s	Tes	tCode: EF	PA Method	8081: PESTI	CIDES		
Client ID: LCSW	Batch	h ID: 56	166	F	RunNo: 7:	3124				
Prep Date: 11/3/2020	Analysis D	Date: 11	1/4/2020	S	SeqNo: 2	571221	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Dieldrin	0.35	0.10	0.5000	0	69.7	17.4	145			
Surr: Decachlorobiphenyl	1.8		2.500		73.3	38.2	102			
Surr: Tetrachloro-m-xylene	1.7		2.500		67.5	32.3	92.4			
Sample ID: LCSD-56166	SampT	ype: LC	SD	Tes	tCode: EF	PA Method	8081: PESTI	CIDES		
Client ID: LCSS02	Batch	h ID: 56	166	F	RunNo: 7:	3124				
Prep Date: 11/3/2020	Analysis D	Date: 11	1/4/2020	5	SeqNo: 2	571222	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Dieldrin	0.48	0.10	0.5000	0	95.6	17.4	145	31.4	20	R
Surr: Decachlorobiphenyl	2.5		2.500		99.9	38.2	102	0	20	
Surr: Tetrachloro-m-xylene	2.0		2.500		78.4	32.3	92.4	0	20	
Sample ID: MB-56166	SampT	ype: ME	BLK	Tes	tCode: EF	PA Method	8081: PESTI	CIDES		
Client ID: PBW	Batch	h ID: 56	166	F	RunNo: 7:	3124				
Prep Date: 11/3/2020	Analysis D	Date: 11	1/4/2020	S	SeqNo: 2	571226	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Dieldrin	ND	0.10								
Surr: Decachlorobiphenyl	1.5		2.500		60.1	38.2	102			
Surr: Tetrachloro-m-xylene	1.6		2.500		62.0	32.3	92.4			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank В

Е Value above quantitation range

J Analyte detected below quantitation limits

Sample pH Not In Range Reporting Limit Р

RL

Page 11 of 18

Client: AMAFCA **Project:** CMC

Sample ID: MB-56094	SampT	ype: MB	BLK	Tes	tCode: SI	M5210B: B	DD			
Client ID: PBW	Batch	n ID: 560)94	F	RunNo: 7	3094				
Prep Date: 10/29/2020	Analysis D	ate: 11	/3/2020	S	SeqNo: 2	570048	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Biochemical Oxygen Demand	ND	2.0								
Sample ID: LCS-56094	SampT	ype: LC	S	Tes	tCode: SI	M5210B: B	OD			
Sample ID: LCS-56094 Client ID: LCSW		ype: LC			tCode: SI RunNo: 7:		OD			
Client ID: LCSW		n ID: 560)94	F		3094	DD Units: mg/L			
Client ID: LCSW	Batch	n ID: 560)94 /3/2020	F	RunNo: 7	3094		%RPD	RPDLimit	Qual
Client ID: LCSW Prep Date: 10/29/2020	Batch Analysis D	n ID: 560 Pate: 11)94 /3/2020	F	RunNo: 7 : SeqNo: 2 :	3094 570049	Units: mg/L	%RPD	RPDLimit	Qual R

R-RPD between dilutions >30%

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded Not Detected at the Reporting Limit
- ND
- PQL Practical Quanitative Limit S
 - % Recovery outside of range due to dilution or matrix

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
 - J Analyte detected below quantitation limits
 - Р Sample pH Not In Range Reporting Limit

Page 12 of 18

RL

QC SUMMARY REPORT	
Hall Environmental Analysis Laboratory, Inc.	

Client: Project:	AMAFC CMC	A									
Sample ID: ME	3-56090	Samp	Туре: МЕ	BLK	Tes	tCode: SN	M 9223B Fe	ecal Indicator	: E. coli N	IPN	
Client ID: PB	w	Bat	ch ID: 56	090	RunNo: 73015						
Prep Date: 1	0/28/2020	Analysis	Date: 10	0/29/2020	S	SeqNo: 2	566688	Units: MPN	/100mL		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
E. Coli		<1	1.000								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank в
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH Not In Range Reporting Limit Р
- RL

Page 13 of 18

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

AMAFCA

Project:	CMC									
Sample ID: MB	Sam	SampType: MBLK TestCode: SM 4500 NH3: Ammonia								
Client ID: PBW	Bat	ch ID: R7	3186	F	RunNo: 7	3186				
Prep Date:	Analysis	Date: 11	/6/2020	5	SeqNo: 2	574097	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Ammonia	ND	1.0								
Sample ID: LCS	Sam	oType: LC	S	Tes	tCode: SI	M 4500 NH3	3: Ammonia			
Client ID: LCSW	Bat	ch ID: R7	3186	F	RunNo: 7	3186				
Prep Date:	Analysis	Date: 11	/6/2020	5	SeqNo: 2	574098	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Ammonia	9.9	1.0	10.00	0	99.4	80	120			

Qualifiers:

Client:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 18

Client:AMAFCAProject:CMC

Sample ID: MB-56210	SampT	уре: МВ	BLK	Tes	tCode: El	PA Method	365.1: Total P	hosphore	ous	
Client ID: PBW	Batch	ID: 562	210	F	RunNo: 7	3152				
Prep Date: 11/4/2020	Analysis D	ate: 11	/5/2020	S	SeqNo: 2	573241	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Phosphorus, Total (As P)	ND	0.010								
		0.010 ype: LC	S	Tes	tCode: El	PA Method	365.1: Total P	hosphore	ous	
Sample ID: LCS-56210	SampT		-		tCode: El RunNo: 7 :		365.1: Total P	hosphore	ous	
Sample ID: LCS-56210 Client ID: LCSW	SampT	ype: LC	210	F		3152	365.1: Total P Units: mg/L	hosphore	ous	
	SampT Batch	ype: LC	210 /5/2020	F	RunNo: 7 :	3152		hosphore%	DUS RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 18

QC SUMMARY REPORT	
Hall Environmental Analysis Laboratory, In	C.

AMAFCA

Project: CMC Sample ID: MB-56113 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids Client ID: PBW Batch ID: 56113 RunNo: 73044 Prep Date: 10/29/2020 Analysis Date: 10/30/2020 SeqNo: 2567736 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Total Dissolved Solids ND 20.0 Sample ID: LCS-56113 TestCode: SM2540C MOD: Total Dissolved Solids SampType: LCS Client ID: LCSW Batch ID: 56113 RunNo: 73044 Prep Date: 10/29/2020 Analysis Date: 10/30/2020 SeqNo: 2567737 Units: mg/L RPDLimit SPK value SPK Ref Val %REC LowLimit %RPD Analyte Result PQL HighLimit Qual **Total Dissolved Solids** 1010 20.0 1000 0 101 80 120 Sample ID: 2010C61-001CDUP SampType: DUP TestCode: SM2540C MOD: Total Dissolved Solids Client ID: RG-North-20201026 Batch ID: 56113 RunNo: 73044 Prep Date: 10/29/2020 Analysis Date: 10/30/2020 Units: mg/L SeqNo: 2567739 Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Total Dissolved Solids 20.0 3.77 10 243

Qualifiers:

Client:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 18

QC SUMMARY REPORT	
Hall Environmental Analysis Laboratory, Inc.	

WO#:	2010C61
	12.Mar.21

Client:	AMAFCA	4									
Project:	CMC										
Sample ID:	MB-56235	SampT	ype: ME	BLK	Tes	tCode: SI	4500 Nor	g C: TKN			
Client ID:	PBW	Batch	n ID: 56	235	F	RunNo: 73	3185				
Prep Date:	11/5/2020	Analysis D	ate: 11	/6/2020	5	eqNo: 2	574077	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Kjeld	ahl, Total	ND	1.0								
Sample ID:	LCS-56235	SampT	ype: LC	S	Tes	tCode: SI	4500 Nor	g C: TKN			
Client ID:	LCSW	Batch	n ID: 56	235	F	RunNo: 7 3	3185				
Prep Date:	11/5/2020	Analysis D	ate: 11	/6/2020	S	eqNo: 2	574078	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Kjeld	ahl, Total	9.9	1.0	10.00	0	99.4	80	120			
Sample ID:	2010C61-001CMS	SampT	ype: MS	6	Tes	tCode: SI	4500 Nor	g C: TKN			
Client ID:	RG-North-2020102	26 Batch	n ID: 56	235	F	RunNo: 73	3185				
Prep Date:	11/5/2020	Analysis D	ate: 11	/6/2020	S	eqNo: 2	574080	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Kjeld	ahl, Total	10	1.0	10.00	0	102	75	125			
Sample ID:	2010C61-001CMS	D SampT	ype: MS	SD	Tes	tCode: SI	4500 Nor	g C: TKN			
Client ID:	RG-North-2020102	26 Batch	n ID: 56	235	F	RunNo: 73	3185				
Prep Date:	11/5/2020	Analysis D	ate: 11	/6/2020	S	eqNo: 2	574081	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nitrogen, Kjeld	ahl, Total	10	1.0	10.00	0	105	75	125	2.70	20	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank в

Е Value above quantitation range

J Analyte detected below quantitation limits P Sample pH Not In Range RL Reporting Limit

Page 17 of 18

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

AMAFCA

WO#: 2010C61 12-Mar-21

Project: CMC						
Sample ID: MB-56151	SampType: MBLK	TestCode: SM 2540D: T	SS			
Client ID: PBW	Batch ID: 56151	RunNo: 73090				
Prep Date: 11/2/2020	Analysis Date: 11/3/2020	SeqNo: 2569868	Units: mg/L			
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Suspended Solids	ND 4.0					
Sample ID: LCS-56151	SampType: LCS	TestCode: SM 2540D: T	SS			
Client ID: LCSW	Batch ID: 56151	RunNo: 73090				
Prep Date: 11/2/2020	Analysis Date: 11/3/2020	SeqNo: 2569869	Units: mg/L			
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Suspended Solids	100 4.0 92.10	0 113 83.71	119.44			

Qualifiers:

Client:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank в
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Sample pH Not In Range Reporting Limit Р
- RL

Page 18 of 18

HALL ENVIRONMENTAL ANALYSIS LABORATORY		4901 Hawkins erque, NM 87 1X: 505-345-4	NE 109 Sar 107	nple Log-In Check List
Client Name: AMAFCA	Work Order Number: 2	010C61		RcptNo: 1
Received By: Sean Livingston 1	0/28/2020 3:16:00 PM		5-6	not
Completed By: Erin Melendrez 1	0/28/2020 4:25:22 PM			0
Reviewed By: JR 10/28/20 a	11:38			
Chain of Custody				
1. Is Chain of Custody complete?	Y	es 🗹	No 🗌	Not Present
2. How was the sample delivered?	<u>C</u>	lient		
Log In 3. Was an attempt made to cool the samples?	Y	es 🗸	No 🗌	
4. Were all samples received at a temperature of	>0° C to 6.0°C Y	es 🔽	No 🗌	
5. Sample(s) in proper container(s)?		es 🔽	No 🗌	
6. Sufficient sample volume for indicated test(s)?		es 🗸	No 🗌	
7. Are samples (except VOA and ONG) properly p		es 🔽		
8. Was preservative added to bottles?		es 🗌	No 🗹	NA 🗆
9. Received at least 1 vial with headspace <1/4" for	r AQ VOA? Y	es 🗌	No 🗌	NA 🗹
10. Were any sample containers received broken?	Y	es 🗆	No 🗹	# of preserved
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Y	es 🔽	No 🗌	for pH: (<2) or >12 unless noted)
12. Are matrices correctly identified on Chain of Cu:	stody? Ye	es 🗸	No 🗌	Adjusted? N(()
13. Is it clear what analyses were requested?		es 🗸	No 🗌	
14. Were all holding times able to be met?	Y	es 🔽	No 🗌	Checked by: JR 10/29/20
(If no, notify customer for authorization.)				(BOD/UNDOGS./E CONT, SUL INTER
<u>Special Handling (if applicable)</u>				
15. Was client notified of all discrepancies with this	order? Y	es 🗋	No 🗌	NA 🗹
Person Notified:	Date:			
By Whom:	Via:	eMail 🗌 Ph	ione 🗌 Fax	In Person
Regarding:				
Client Instructions:				
16. Additional remarks:				
17. Cooler Information		ID4		
Cooler No Temp ^o C Condition Seal 1 5.8 Good	Intact Seal No Sea	I Date :	Signed By	
2 0.4 Good				

C	hain	-of-C	ustody Record	Turn-Around	Time:		1 🖬		and the second s												
Client:	AMA	FCA		Standard	I □ Rusł			0				1942		100	100			_	NT	2.27	1.1
	1 ((A ()	TCT		Project Name													BORATORY				
Mailing	Address		AL C	CM	6		www.hallenvironmental.com														
	Address	260	o ProspectiAve	Project #:	-			49	01 H	awki	ins M	NE -	Alb	uqu	erqu	e, N	M 87	7109			
				Project #.				Te	el. 50	5-34	15-3	-				-	-410	7		-	-
Phone	#:						λ.,			-		A		sis	Req	uest	1			-	
email o	or Fax#:			Project Mana			21)	(Q)					SO4			ent)					
	Package:			Pt	ich CV	1.1127	(80	/ MF	PCB's	1	IMS		PO4,			Abs	1ist	is	4 ·		
□ Star			□ Level 4 (Full Validation)		a 1	TAVE L	TMB's (8021)	TPH:8015D(GRO / DRO / MRO)	2 P(8270SIMS		2, P(Total Coliform (Present/Absent)	-	-5			
Accred			ompliance	Sampler:			Ψ	0/0	808	4.1)			NO ₂ ,		()	rese	Ter.	1 CV			
	AC (Type)	□ Othe	r	On Ice: # of Coolers:	Ves	🗆 No	E I	GRO	les/	150	0 or	als			/OA	n (P	tac	12			
						0 -5-42 0.420=0.4(°C)	BTEX / MTBE	D)DS	8081 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310	RCRA 8 Metals	CI, F, Br, NO ₃ ,	(A)	8270 (Semi-VOA)	iforr	attached	1			
		6.000	· · · · · · · · · · · · · · · · · · ·	eeener rennp		Constant of the state of the st	1	301	Pes	(Me	by	A 8	В	8260 (VOA)	(Se	Col	Sce	a1:			
350.1		14-0-10		Container	Preservative		Ē	PH:6	381	B	AHs	CR	ц,	260	270	otal	200	U.			
Date 10/	Time	Matrix	Sample Name	Type and #	Туре	2016 CG1	B	н	õ	ш	₽.	R	0	80	8	F				-	-
1000	10,20	100	RG-North-20201026			-001/-002	_	1		_		-		-	-	-	X			_	_
10/28/2	0 14:10	SW	RG-South-20201028			-00831-004											×	X			
1/48/20	12:05	SW	Riz-Alameda -202010	28		-005	-	1					1.13				1.43	X			
			Trid Blank			-006															
			ENH 10/29/20			1. State											1				
	-										1000										
				-										-	-		-				
	-						-	1		-			-	-					-	-	-
								-				-		_							
										-	-	-			_		_		_		
									-	-	-		- 1 - 1				_		_		-
Date:	Time	Polinguis	and hur	Received by:	Via:	Date Time	Der					2.3			<u></u>	_	1		\geq		
Date:	Time:	Relinquist	A Babtie			0/25/22 15:14	Rei	nark	s. N	ste	: F	LG	- No	the	-,2	0,20	10.2	64	-	al i	~
Date:	15:10 Time:	Relinguist	ned by:	SGL Received by:	Via:	Date Time					1	clic	col	YE	50	51	f Bc	20	lue .	to S	hort
Date.	nine.		icu 5j.	i coon ou by.	viu.	Date Time						hal	d t	ime	25.						
	1	1									_						_	_			

Collaborative Monitoring Cooperative - Analyses List Attach to Chain of Custody

Please refer to attached NPDES Permit No. NMR04A00 Appendix F. Methods and minimum quantification levels (MQL's) will be those approved under 40 CFR 136 and specified in the attached permit

Analyte (Bold Indicates WQS)	CAS#	Fraction	Method #	MDL (µg/L	
Hardness (Ca + Mg)	NA	Total	200.7	2.4	
Lead	7439-92-1	Dissolved	200.8	0.09	
Copper	7440-50-8	Dissolved	200.8	1.06	
Ammonia + organic nitrogen	7664-41-7	Total	350.1	31.32	
Total Kjehldal Nitrogen	17778-88-0	Total	351.2	58.78	
Nitrate + Nitrite	14797-55-8	Total	353.2	10.17	
Polychlorinated biphenyls (PCBs)	1336-36-3	Total	1668	0.014	
Tetrahydrofuran (THF)	109-99-9	Total	8260C	7.9	
bis(2-Ethylhexyl)phthalate	117-81-7	Total	8270D	0.2	
Dibenzofuran	132-64-9	Total	8270D	0.2	
ndeno(1,2,3-cd)pyrene	193-39-5	Total	8270D	0.2	
Benzo(b)fluoranthene	205-99-2	Total	8270D	0.1	
Benzo(k)fluoranthene	207-08-9	Total	8270D	0.1	
Chrysene	218-01-9	Total	8270D	0.2	
3enzo(a)pyrene	50-32-8	Total	8270D	0.3	
Dibenzo(a,h)anthracene	53-70-3	Total	8270D		
Benzo(a)anthracene	56-55-3	Total	8270D	0.2	
Dieldrin	60-57-1	Total	8081	0.1	
Pentachlorophenol	87-86-5	Total	8270D	0.2	
Benzidine	92-87-5	Total	8270D	0.1	
Chemical Oxygen Demand	E1641638 ²	Total	НАСН	5100	
Gross alpha (adjusted)	NA	Total	Method 900	0.1 pCi/L	
Fotal Dissolved Solids	E1642222 ²	Total	SM 2540C	60.4	
Total Suspended Solids	NA	Total	SM 2540D	3450	
Biological Oxygen Demand	N/A	Total	Standard Methods	930	
Dil and Grease		Total	1664A	5000	
Ecoli			SM 9223B		
Н	1		SM 4500		
Phosphorus	1	Dissolved	365.1	100	
Phosphorus		Total	365.1	100	
Chromium IV		Total	3500Cr C-2011	100	

ATTACHMENT 2

FY 2021 WET SEASON COMPLETED DATA VERIFICATION AND VALIDATION (V&V) FORMS

Attachment 1.1 Water Quality Sample Data Verification and Validation Worksheet

Study Name: <u>Compliance Monitoring Cooperative (CMC)</u> Year: <u>FY 2021 (October 2020 – Wet Season Sample)</u> Project Coordinator: <u>For Data Review and Reporting – SJG, BHI</u> V&V Reviewer: <u>SJG</u> Data covered by this worksheet: <u>Rio Grande North – 10/26/2020</u> Version of Verification/Validation Procedures: <u>QAPP – CMC SOP #2 (2/2015); AMAFCA SOP #5 (2/2019)</u>

Step 1: Verify Field Data

A. Are all Field Data forms present and complete? Xes No

If yes, proceed; if no, attempt to locate missing forms, then indicate any remaining missing forms and action taken.

Missing Field Data Forms	Action Taken

Total number of occurrences: 0

B. Are station name and ID, and sampling date and time on forms consistent with database? \boxtimes Yes \square No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station and Parameter	Action Taken	Re-verified?

Total number of occurrences: 0

C. Are field data on forms consistent with database? \square Yes \square No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station	Sampling Date	Parameter(s) Corrected	Re-verified?

Total number of occurrences: 0

D. Are RIDs correct and associated with the correct analytical suite, media subdivision (e.g. surface water, municipal waste, etc.) and activity type (e.g. Field observation, Routine sample, QA sample etc.)?

Yes No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify

.....

Station/RID	Sampling Date	RID Corrected	Re-verified?	

Total number of occurrences: 0

Step 1 Completed Initials: SJG Date: 4/22/2021

Step 2: Verify Data Deliverables

A. Have all data in question been delivered? Xes No

If yes, proceed; if no, indicate RIDs with missing data (samples or blanks) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken. Complete this step upon receipt of all missing data.

RID	Submittal Date	Missing Data/Parameters	Date of Initial Verification	Date Missing Data Were Received

Total number of occurrences: 0

В.	Do all of the analy	ytical suites h	have the correct	number and t	ype of analytes.	🛛 Yes	🗌 No
----	---------------------	-----------------	------------------	--------------	------------------	-------	------

If yes, proceed; if no, indicate RIDs with missing or incorrect analyte(s) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken.

*Note – Lab report identifies "Dissolved Phosphorous" as "Total Phosphorous" on a filtered sample (identified under "Client Sample ID" as (Diss)).

RID Submittal Date	Missing or Incorrect Parameters	Action Taken	Re-verified?
--------------------	---------------------------------------	--------------	--------------

Rio Grande North	<u>10/26/2020</u>	Lab report lists Dissolved Phosphorous results as "Total Phosphorous" for "filtered sample".	Notified AMAFCA of this and verified with HEAL. BHI added note to the lab report.	Yes

*Note – HEAL Lab report order number 2010C61.

Step 2 Completed Initials: SJG Date: 4/22/2021

Step 3: Verify Flow Data

*Note – Not Applicable – no flow data provided with CMC sample collection

A._Identify incorrect or missing data on the flow calculation spreadsheet and correct errors.

Station	Sampling Date	Flow data missing or incorrect?

Total number of occurrences: 0

B. Identify incorrect or missing discharge measurements, correct errors in database and re-verify.

Station	Sampling Date	Flow data missing or incorrect?	Re-verified?	

Total number of occurrences: 0

<u>Not Applicable</u> ☐ Step 3 Completed Initials: <u>SJG</u> Date: <u>4/22/2021</u>

Step 4: Verify Analytical Results for Missing Information or Questionable Results

Were any results with missing/questionable information identified? \boxtimes Yes \Box No

If no, proceed; if yes, indicate results with missing information or questionable results or attach report. Contact data source and indicate action taken. Complete this step upon receipt of missing information or clarification of questionable results (clarify questionable results only, DO NOT change results without written approval (from lab or QA officer) and associated documentation).

RID	Sample Date	Missing or Questionable Information/Results	Action Taken
<u>Rio Grande</u> <u>North</u>	<u>10/26/2020</u>	Lab report provides Dissolved Phosphorous results as "Total Phosphorous" for "filtered sample".	BHI added note to the lab report.

*Note – HEAL Lab report order number 2010C61.

Total number of occurrences: 1

Step 4 Completed Initials: <u>SJG</u> Date: <u>4/22/2021</u>

Step 5: Validate Blanks Results

Were any analytes of concern detected in blank samples?
Yes Xo

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager, with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes have been added to database correctly.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validatio n Code/Fla g Applied	Code/Flag verified in database? *

*See validation procedures to determine which associated data need to be flagged and include on Validation Codes Form.

Total number of occurrences: 0

Step 5 Completed Initials: <u>SJG</u> Date: <u>4/22/2021</u>

Step 6: Validate Holding Times Violations

Were any samples submitted that did not meet specified holding times? \Box Yes \Box No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validation Code/Flag Applied	Code/Flag verified in database to ALL associated data?*
<u>Rio</u> <u>Grande</u> <u>North</u>	<u>10/26/2021</u>	<u>Dieldrin</u>	<u>No</u>	<u>Surface</u> <u>water</u> sample	Н	Yes
Rio Grande North	<u>10/26/2021</u>	<u>TSS</u>	<u>No</u>	Surface water sample	Н	Yes

*See validation procedures to determine which associated data need to be flagged.

*Note – Lab reports lists pH with hold time flag. Database uses field data reported pH, so this is hold time is not applicable.

Total number of occurrences: 2

Step 6 Completed Initials: SJG Date: 4/22/2021

Step 7: Validate Replicate/Duplicate Results (if applicable)

Were any replicate/duplicate pairs submitted outside of the established control limit of 20%?

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID Pairs	Replicate or Duplicate?	Sample Date	Parameter	RPD	Validation Code/Flag Applied	Code/Flag verified in database applied?*

*See validation procedures to determine which associated data need to be flagged.

Total number of occurrences: 0

Step 7 Completed Initials: SJG Date: 4/22/2021

After all of the above steps have been completed, save and print the worksheet, attach all applicable supplemental information and sign below.

I acknowledge that the data verification and validation process has been completed for the data identified above in accordance with the procedures described in the CMC QAPP, SOP #2

Darch County

4/22/2021

Data Verifier/Validator Signature

Date

COMPLETION OF DATA VERIFICATION AND VALIDATION PROCESS

Once the data verification and validation process has been completed for the <u>entire study</u> (note: if the worksheet is for a subset of the data from a study, be sure ALL the data for the entire study is included before final completion of the data verification and validation process), notify the NMSQUID administrator that the process is complete and request that "V V in STORET" be added to the project title.

Once all data have been verified and validated for a study provide <u>copies</u> of ALL *Data Verification and Validation Worksheets* and attachments associated with the study to the Quality Assurance Officer and retain <u>originals</u> in the project binder.

Attachment 1.2 SWQB Validation Codes

When deficiencies are identified through the data verification and validation process, AMAFCA documents or "flags" the deficiencies by assigning validation codes. All data collected from the last compliant QC sample and up to the next compliant QC sample are assigned validation codes. The validation code alerts the data user that the results are outside QA control limits and may require re-sampling or a separate, qualitative analysis based on professional judgment.

Validation Code	Definition	WQX Equivalent
A1	Sample not collected according to SOP	
B1	Chemical was detected in the field blank at a concentration less than 5% of the sample concentration.	
BN	Blanks NOT collected during sampling run	
BU	Detection in blank. Analyte was not detected in this sample above the method's sample detection limit.	BU
RB1	Chemical was detected in the field blank at a concentration greater than or equal to 5% of the sample concentration. Results for this sample are rejected because they may be the result of contamination; the results may not be reported or used for regulatory compliance purposes.	В
R1	Rejected due to incorrect sample preservation	R
R2	Rejected due to equipment failure in the field	R
R3	Rejected based on best professional judgment	R
D1	Spike recovery not within method acceptance limits	
F1	Sample filter time exceeded	
J1	Estimated: the analyte was positively identified and the associated value is an approximate concentration of the analyte in the sample	J
K1	Holding time violation	Н
Ea	Estimated-Incubation temperature between 35.5 and 38.0° Celsius	
Er	Rejected-Incubation temperature < 34.5 or >38.0° Celsius	
PD1	Percent difference between duplicate samples excessive	
S1	Per SLD, uncertainties (sigmas) are expressed as one standard deviation, i.e. one standard error. Small negative or positive values that are less than two standard deviations should be interpreted as "less than the detection limit."	
S2	Data are suspect but deemed usable based on best professional judgment; documentation of justification is required and should be included in the Data Verification and Validation Packet and reported with results	
Z1	Macroinvertebrate data did not meet QC criteria specified in Section 2.5 of QAPP	
H1	Habitat data did not meet QC criteria specified in Section 2.5 of QAPP	

Attachment 1.1 Water Quality Sample Data Verification and Validation Worksheet

Study Name: <u>Compliance Monitoring Cooperative (CMC)</u> Year: <u>FY 2021 (October 2020 – Wet Season Sample)</u> Project Coordinator: <u>For Data Review and Reporting – SJG, BHI</u> V&V Reviewer: <u>SJG</u> Data covered by this worksheet: <u>Rio Grande at Alameda – 10/28/20</u> Version of Verification/Validation Procedures: QAPP – SOP #2 (2/2015); AMAFCA SOP #5 (2/2019)

Step 1: Verify Field Data

A. Are all Field Data forms present and complete? Xes No

If yes, proceed; if no, attempt to locate missing forms, then indicate any remaining missing forms and action taken.

Missing Field Data Forms	Action Taken

Total number of occurrences: 0

B. Are station name and ID, and sampling date and time on forms consistent with database? \boxtimes Yes \square No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station and Parameter	Action Taken	Re-verified?

Total number of occurrences: 0

C. Are field data on forms consistent with database? \square Yes \square No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station	Sampling Date	Parameter(s) Corrected	Re-verified?

Total number of occurrences: 0

D. Are RIDs correct and associated with the correct analytical suite, media subdivision (e.g. surface water, municipal waste, etc.) and activity type (e.g. Field observation, Routine sample, QA sample etc.)?

Yes No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify

Station/RID	Sampling Date	RID Corrected	Re-verified?

Total number of occurrences: 0

Step 1 Completed Init	ials: SJG Date: 4	/22/2021
-----------------------	-------------------	----------

Step 2: Verify Data Deliverables

A. Have all data in question been delivered? Xes No

If yes, proceed; if no, indicate RIDs with missing data (samples or blanks) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken. Complete this step upon receipt of all missing data.

RID	Submittal Date	Missing Data/Parameters	Date of Initial Verification	Date Missing Data Were Received

Total number of occurrences: 0

Β.	Do all of the anal	ytical suites	have the correct	number and	type of analytes.	🛛 Yes	🗌 No
----	--------------------	---------------	------------------	------------	-------------------	-------	------

If yes, proceed; if no, indicate RIDs with missing or incorrect analyte(s) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken.

RID	Submittal Date	Missing or Incorrect Parameters	Action Taken	Re-verified?

Step 2 Completed Initials: SJG Date: 4/22/2021

Step 3: Verify Flow Data

*Note – Not Applicable – no flow data provided with CMC sample collection.

A._Identify incorrect or missing data on the flow calculation spreadsheet and correct errors.

Station	Sampling Date	Flow data missing or incorrect?

Total number of occurrences: 0

B. Identify incorrect or missing discharge measurements, correct errors in database and re-verify.

Station	Sampling Date	Flow data missing or incorrect?	Re-verified?

Total number of occurrences: 0

Not Applicable		
Step 3 Completed	Initials: SJG	Date: 4/22/2021

Step 4: Verify Analytical Results for Missing Information or Questionable Results

Were any results with missing/questionable information identified? \Box Yes \Box No

If no, proceed; if yes, indicate results with missing information or questionable results or attach report. Contact data source and indicate action taken. Complete this step upon receipt of missing information or clarification of questionable results (clarify questionable results only, DO NOT change results without written approval (from lab or QA officer) and associated documentation).

RID	Sample Date	Missing or Questionable Information/Results	Action Taken

Total number of occurrences: 1

Step 4 Completed Initials: SJG Date: 4/22/2021

Step 5: Validate Blanks Results

Were any analytes of concern detected in blank samples?
Yes Xo

.....

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager, with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes have been added to database correctly.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validatio n Code/Fla g Applied	Code/Flag verified in database?

See validation procedures to determine which associated data need to be flagged and include on Validation Codes Form.

Total number of occurrences: 0

		Step 5 Completed	Initials: SJG	Date: 4/22/2021
Step 6: Validate Holding Times Violations Were any samples submitted that did not meet specified holding times?	No No			

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validation Code/Flag Applied	Code/Flag verified in database to ALL associated data?*

*See validation procedures to determine which associated data need to be flagged.

Total number of occurrences: 0

Step 6 Completed Initials: SJG Date: 4/22/2021

Step 7: Validate Replicate/Duplicate Results (if applicable)

Were any replicate/duplicate pairs submitted outside of the established control limit of 20%? \Box Yes \boxtimes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID Pairs	Replicate or Duplicate?	Sample Date	Parameter	RPD	Validation Code/Flag Applied	Code/Flag verified in database applied?*

Total number of occurrences: 0

Step 7 Completed Initials: SJG Date: 4/22/2021

After all of the above steps have been completed, save and print the worksheet, attach all applicable supplemental information and sign below.

I acknowledge that the data verification and validation process has been completed for the data identified above in accordance with the procedures described in the CMC QAPP, SOP #2

Sarch County

4/22/2021

Data Verifier/Validator Signature

Date

COMPLETION OF DATA VERIFICATION AND VALIDATION PROCESS

Once the data verification and validation process has been completed for the <u>entire study</u> (note: if the worksheet is for a subset of the data from a study, be sure ALL the data for the entire study is included before final completion of the data verification and validation process), notify the NMSQUID administrator that the process is complete and request that "V V in STORET" be added to the project title.

Once all data have been verified and validated for a study provide <u>copies</u> of ALL *Data Verification and Validation Worksheets* and attachments associated with the study to the Quality Assurance Officer and retain <u>originals</u> in the project binder.

Attachment 1.2 SWQB Validation Codes

When deficiencies are identified through the data verification and validation process, AMAFCA documents or "flags" the deficiencies by assigning validation codes. All data collected from the last compliant QC sample and up to the next compliant QC sample are assigned validation codes. The validation code alerts the data user that the results are outside QA control limits and may require re-sampling or a separate, qualitative analysis based on professional judgment.

Validation Code	Definition	WQX Equivalent
A1	Sample not collected according to SOP	
B1	Chemical was detected in the field blank at a concentration less than 5% of the sample concentration.	
BN	Blanks NOT collected during sampling run	
BU	Detection in blank. Analyte was not detected in this sample above the method's sample detection limit.	BU
RB1	Chemical was detected in the field blank at a concentration greater than or equal to 5% of the sample concentration. Results for this sample are rejected because they may be the result of contamination; the results may not be reported or used for regulatory compliance purposes.	В
R1	Rejected due to incorrect sample preservation	R
R2	Rejected due to equipment failure in the field	R
R3	Rejected based on best professional judgment	R
D1	Spike recovery not within method acceptance limits	
F1	Sample filter time exceeded	
J1	Estimated: the analyte was positively identified and the associated value is an approximate concentration of the analyte in the sample	J
K1	Holding time violation	Н
Ea	Estimated-Incubation temperature between 35.5 and 38.0° Celsius	
Er	Rejected-Incubation temperature < 34.5 or >38.0° Celsius	
PD1	Percent difference between duplicate samples excessive	
S1	Per SLD, uncertainties (sigmas) are expressed as one standard deviation, i.e. one standard error. Small negative or positive values that are less than two standard deviations should be interpreted as "less than the detection limit."	
S2	Data are suspect but deemed usable based on best professional judgment; documentation of justification is required and should be included in the Data Verification and Validation Packet and reported with results	
Z1	Macroinvertebrate data did not meet QC criteria specified in Section 2.5 of QAPP	
H1	Habitat data did not meet QC criteria specified in Section 2.5 of QAPP	

Attachment 1.1 Water Quality Sample Data Verification and Validation Worksheet

Study Name: <u>Compliance Monitoring Cooperative (CMC)</u> Year: <u>FY 2021 (October 2020 – Wet Season Sample)</u> Project Coordinator: <u>For Data Review and Reporting – SJG, BHI</u> V&V Reviewer: <u>SJG</u> Data covered by this worksheet: <u>Rio Grande South – 10/28/20</u> Version of Verification/Validation Procedures: <u>QAPP – SOP #2 (2/2015)</u>; <u>AMAFCA SOP #5 (2/2019)</u>

Step 1: Verify Field Data

A. Are all Field Data forms present and complete? Xes No

If yes, proceed; if no, attempt to locate missing forms, then indicate any remaining missing forms and action taken.

Missing Field Data Forms	Action Taken

Total number of occurrences: 0

B. Are station name and ID, and sampling date and time on forms consistent with database? \boxtimes Yes \square No If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station and Parameter	Action Taken	Re-verified?

Total number of occurrences: 0

C. Are field data on forms consistent with database? \square Yes \square No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify.

Station	Sampling Date	Parameter(s) Corrected	Re-verified?

Total number of occurrences: 0

D. Are RIDs correct and associated with the correct analytical suite, media subdivision (e.g. surface water, municipal waste, etc.) and activity type (e.g. Field observation, Routine sample, QA sample etc.)?

Yes No

If yes, proceed; if no, indicate errors identified, correct errors in database and re-verify

.....

Station/RID	Sampling Date	RID Corrected	Re-verified?

Total number of occurrences: 0

Step 1 Completed Initials: SJG Date: 4/22/2021

Step 2: Verify Data Deliverables

A. Have all data in question been delivered? Xes No

If yes, proceed; if no, indicate RIDs with missing data (samples or blanks) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken. Complete this step upon receipt of all missing data.

RID	Submittal Date	Missing Data/Parameters	Date of Initial Verification	Date Missing Data Were Received

Total number of occurrences: 0

B. Do all of the analytical suites have the correct number and type of analytes. 🛛 Yes 🗌 No

If yes, proceed; if no, indicate RIDs with missing or incorrect analyte(s) or attach report with applicable RIDs highlighted. Contact data source and indicate action taken.

*Note – Lab report identifies "Dissolved Phosphorous" as "Total Phosphorous" on a filtered sample (identified under "Client Sample ID").

RID	Submittal Date	Missing or Incorrect Parameters	Action Taken	Re-verified?
Rio Grande South	<u>10/28/2020</u>	Lab report lists Dissolved Phosphorous results as "Total Phosphorous" for "filtered sample".	Notified AMAFCA of this and verified with HEAL. BHI added note to the lab report.	Yes

*Note - HEAL Lab report order number 2010C61.

Step 2 Completed Initials: SJG Date: 4/22/2021

Step 3: Verify Flow Data

*Note – Not Applicable – no flow data provided with CMC sample collection A._Identify incorrect or missing data on the flow calculation spreadsheet and correct errors.

Station	Sampling Date	Flow data missing or incorrect?		

Total number of occurrences: 0

B. Identify incorrect or missing discharge measurements, correct errors in database and re-verify.

Station	Sampling Date	Flow data missing or incorrect?	Re-verified?	

Total number of occurrences: 0

<u>Not Applicable</u> ☐ Step 3 Completed Initials: <u>SJG</u> Date: <u>4/22/2021</u>

Step 4: Verify Analytical Results for Missing Information or Questionable Results

Were any results with missing/questionable information identified? \boxtimes Yes \Box No

If no, proceed; if yes, indicate results with missing information or questionable results or attach report. Contact data source and indicate action taken. Complete this step upon receipt of missing information or clarification of questionable results (clarify questionable results only, DO NOT change results without written approval (from lab or QA officer) and associated documentation).

RID	Sample Date	Missing or Questionable Information/Results	Action Taken
<u>Rio Grande</u> <u>South</u>	<u>10/28/2020</u>	Lab report provides Dissolved Phosphorous results as "Total Phosphorous" for "filtered sample".	BHI added note to the lab report.

*Note – HEAL Lab report order number 2010C61. Total number of occurrences: 1

Step 4 Completed Initials: SJG Date: 4/22/2021

Step 5: Validate Blanks Results

Were any analytes of concern detected in blank samples?
Yes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager, with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes have been added to database correctly.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validatio n Code/Fla g Applied	Code/Flag verified in database? *

*See validation procedures to determine which associated data need to be flagged and include on Validation Codes Form.

Total number of occurrences: 0

Step 5 Completed Initials: <u>SJG</u> Date: <u>4/22/2021</u>

Step 6: Validate Holding Times Violations

Were any samples submitted that did not meet specified holding times? Yes No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID	Sample Date	Parameter	[Blank]	[Sample]	Validation Code/Flag Applied	Code/Flag verified in database to ALL associated data?*
<u>Rio</u> <u>Grande</u> <u>South</u>	10/28/2021	BOD	No	Surface water sample	H	Yes

*See validation procedures to determine which associated data need to be flagged.

*Note – Lab reports lists pH with hold time flag. Database uses field data reported pH, so this is hold time is not applicable.

Total number of occurrences: 1

Step 6 Completed Initials: SJG Date: 4/22/2021

Step 7: Validate Replicate/Duplicate Results (if applicable)

Were any replicate/duplicate pairs submitted outside of the established control limit of 20%?

🗌 Yes 🛛 🖾 No

If no, proceed; if yes, list results that need to have validation codes applied in the database save these results as an excel file and forward to QA officer or Program Manager with a request to add appropriate validation codes to database. Complete this step after verifying that validation codes/flags have been added to database.

RID Pairs	Replicate or Duplicate?	Sample Date	Parameter	RPD	Validation Code/Flag Applied	Code/Flag verified in database applied?*

Total number of occurrences: 0

Step 7 Completed Initials: SJG Date: 4/22/2021

After all of the above steps have been completed, save and print the worksheet, attach all applicable supplemental information and sign below.

I acknowledge that the data verification and validation process has been completed for the data identified above in accordance with the procedures described in the CMC QAPP, SOP #2

Sarch County

Data Verifier/Validator Signature

4/22/2021

Date

COMPLETION OF DATA VERIFICATION AND VALIDATION PROCESS

Once the data verification and validation process has been completed for the <u>entire study</u> (note: if the worksheet is for a subset of the data from a study, be sure ALL the data for the entire study is included before final completion of the data verification and validation process), notify the NMSQUID administrator that the process is complete and request that "V V in STORET" be added to the project title.

Once all data have been verified and validated for a study provide <u>copies</u> of ALL *Data Verification and Validation Worksheets* and attachments associated with the study to the Quality Assurance Officer and retain <u>originals</u> in the project binder.

Attachment 1.2 SWQB Validation Codes

When deficiencies are identified through the data verification and validation process, AMAFCA documents or "flags" the deficiencies by assigning validation codes. All data collected from the last compliant QC sample and up to the next compliant QC sample are assigned validation codes. The validation code alerts the data user that the results are outside QA control limits and may require re-sampling or a separate, qualitative analysis based on professional judgment.

Validation Code	Definition	WQX Equivalent
A1	Sample not collected according to SOP	
B1	Chemical was detected in the field blank at a concentration less than 5% of the sample concentration.	
BN	Blanks NOT collected during sampling run	
BU	Detection in blank. Analyte was not detected in this sample above the method's sample detection limit.	BU
RB1	Chemical was detected in the field blank at a concentration greater than or equal to 5% of the sample concentration. Results for this sample are rejected because they may be the result of contamination; the results may not be reported or used for regulatory compliance purposes.	В
R1	Rejected due to incorrect sample preservation	R
R2	Rejected due to equipment failure in the field	R
R3	Rejected based on best professional judgment	R
D1	Spike recovery not within method acceptance limits	
F1	Sample filter time exceeded	
J1	Estimated: the analyte was positively identified and the associated value is an approximate concentration of the analyte in the sample	J
K1	Holding time violation	Н
Ea	Estimated-Incubation temperature between 35.5 and 38.0° Celsius	
Er	Rejected-Incubation temperature < 34.5 or >38.0° Celsius	
PD1	Percent difference between duplicate samples excessive	
S1	Per SLD, uncertainties (sigmas) are expressed as one standard deviation, i.e. one standard error. Small negative or positive values that are less than two standard deviations should be interpreted as "less than the detection limit."	
S2	Data are suspect but deemed usable based on best professional judgment; documentation of justification is required and should be included in the Data Verification and Validation Packet and reported with results	
Z1	Macroinvertebrate data did not meet QC criteria specified in Section 2.5 of QAPP	
H1	Habitat data did not meet QC criteria specified in Section 2.5 of QAPP	

UNIVERSITY OF NEW MEXICO STORM WATER COMPLIANCE INSPECTION CHECKLIST

	PROJECT NAME:			
	STORM WATER COMPLIANCE INSPECTION – DURING CONSTRUCTION	YES	NO	NA
	The contractor has posted the EPA Permit or the Notice of Intent form and the	TES		
1	name of the site contact person at the entrance to the construction site.			
	The contractor has provided a copy of the completed Notice of Intent and the			
2	Storm Water Pollution Prevention Plan (SWP3) to UNM.			
	An up to date copy of the SWP3 is available on site.			
	The Contractor has adhered to the sequence of soil disturbance activities			
4	identified in the SWP3.			
	The Contractor has been instructed in the emergency procedures to follow in			
5	the event of a hazardous material release, if required.			
	The Contractor has recorded the dates of major construction activities involving			
6	grading, stabilization, and work suspension.			
	The Contractor has scheduled inspections of storm water control measures and			
	discharge points; and the inspections are being performed by qualified			
7	personnel at the frequency stated in the SWP3.			_
	The Contractor has filed completed, signed inspection reports with the SWP3			
	that identify the dates of inspection, weather conditions, findings, and			
8	corrective actions.			
0	When an inspection reveals a requirement to amend the SWP3, the Contractor			
9	revises the SWP3 and provides the amended SWP3 to UNM within seven days.			_
	Site Checks:			
10	Have disturbed areas been stabilized?			
	Are storm drains protected?			
	Are material stockpiles stabilized or isolated?			
	Is sediment or debris visible at drains or discharge locations?			
	Has sediment or loose gravel from the site entrance gotten on the street?			
	Are any oils or chemicals stored near storm drains, discharge locations, or			
15	surface waters?			
	Are runoff control measures (filter fabric, hay bales, silt fencing, etc.) being			
16	adequately maintained?			
17	Are any sediment ponds / traps silted to 1/4 capacity or more?			
	Additional Comments / Observations:			
	Les este de Nesse			
	Inspector's Name:			
	Inspection Date/Time: Weather Conditions:			
	Inspector's Signature:			
	inspector's signature.			

UNIVERSITY OF NEW MEXICO STORM WATER COMPLIANCE INSPECTION CHECKLIST

		YES	NO	NA
18	Contractor has completed all soil disturbing activities at the site.			
	All storm water discharges associated with construction activity have been			
	eliminated.			
	The Contractor has removed all temporary erosion and sediment control			
	measures, or will provide for their removal at the appropriate time as identified in the SWP3.			
20	The Contractor has achieved final stabilization of all areas of the construction			
	site for which he is responsible, where soil disturbing activities have been			
	performed.			
21				
	Contractor has completed and submitted a Notice of Termination (NOT)			
	to EPA within 30 days after:			
22				
	Final stabilization of all portions of the site for which the Contractor is			
а	responsible; or			
	Another Operator has assumed control of all areas of the site that have not			
b	been finally stabilized; or			
С	Coverage under an alternate NPDES permit has been obtained.			
23	The Contractor has provided a copy of the Notice of Termination to UNM			
	Additional Comments / Observations:			
	Insector's Name:			
	Inspection Date/Time:			
	Weather Conditions: Overcast.			
	Inspector's Signature:			

Name	Building No.	Description	Priority	Full Address (in Albuquerque, NM)
Automotive Center	216	Automotive repair shops	High	1800 Tucker Rd. NE
Championship Golf Course	304	Lawn and garden services	High	3601 University Blvd. SE
North Golf Course	290	Lawn and garden services	High	2201 Tucker Ave NE
University Services (surplus property)	267	Surplus property and assets	High	1128 University Blvd. NE
Centennial Engineering	112	Research and education	Medium	Redondo Drive
Center for High Technology Materials	338	Research and education	Medium	1313 Goddard SE
Crystal Growth	331	Research and education	Medium	1000 University Blvd
Food Services	77, 48, 102, 60, 160, 201, 235	Eating places	Medium	Numerous
Ford Utilities Plant	116	Utilities	Medium	300 University Blvd. NE
Landscape Equipment Building	0276A	Lawn and garden services	Medium	1713 Las Lomas Rd. NE
Landscape Storage Building	213	Lawn and garden services	Medium	
Manufacturing Training and Technology Center	341	Research, development, and education	Medium	800 Bradbury Drive SE, Suite 235
Mechanical Engineering	122	Research and education	Medium	Redondo Drive
Recycling	276	Scrap and waste materials	Medium	1008 University Blvd. NE
Storage Yards	274	Public warehousing and storage	Medium	1703 Lomas Blvd. NE
Lomas Chiller and Cogeneration Plant	176	Utility	Medium	1925 Las Lomas Rd NE
Student Union Building	60	Food and copy services	Medium	1 Roma Ave NE
Clark Hall	22	Chemical & research laboratory supplier, education	Low	300 Terrace St. NE
Hospital	235	General medical and surgical hospitals	Low	2211 Lomas Blvd. NE
Safety and Risk Services	233	Hazardous waste storage	Low	1801 Tucker Ave NE
Sign Shop	219	Signs and advertising specialties	Low	1710 Tucker Rd. NE

Table 4. Potential Sources of Illicit Discharges at UNM

FACILITY INFORMATION								
FACILITY NAME: FACILITY TYPE:								
ADDRESS:				FACILITY CONTACT:				
CITY:			STATE:	ZIP:	PHONE:			
CONTACT PERSON(S) AND TITLE(S)	:				EMAIL:			
	-		PHONE:	EMAIL:				
			PHONE:					
			PHONE:	EMAIL:				
AUDITOR INFORMATION					1			
LEAD AUDITOR:				SITE VISIT TIME:	SITE VISIT	DATE:		
AUDITOR:								
FACILITY	Y ACTIVI	TIES		STOR	STORED ONSITE CHEMICALS			
Activity	Yes	No	Subcontract to:	Material	Qu	antity	Container	Stormwater
Maintenance								Exposure?
Equipment Maintenance								
Vehicle Maintenance								
Other Maintenance								
Painting								
Equipment Painting/Stripping								
Vehicle Painting/Stripping								
Other Painting/Stripping								L
Cleaning			1					
Vehicle Washing Equipment Degrease/Washing								
Other Washing								
Storage								
Oil & Haz Chemical Storage								
Vehicle Storage								
Equipment Storage								
Salt/Sidewalk Deicers								
Handling & Disposal of Waste & Materials								
Haz-Mat/Waste Generation		-						
Solid Waste Generation								
Pet/Animal Waste								
Fuel Storage and Delivery								
Vehicle Fueling								
Equipment Fueling								
Fuel Storage								
Tanks (UST/AST)								
Building and Grounds Maintenance								
Floor Wash Down								
Landscape Maintenance								
Pest / Weed Control								
Sidewalk/Pavement Anti-icing								
Other								
	1		1	1				

Pollutant Impacts:

Sediment I Nutrients I Bacteria/Viruses I Oil/Grease I Metals I Organics I Pesticides I Gross Pollutants I Oxygen Demanding Substances I

1.0 DOCUMENTATION		Comments
Facility Inspections and Maintenance Documentation		
	YES NO NA	
1.4 Retain waste generation and disposal documentation		
1.5 Activities inspected for non-stormwater discharges		
1.6 Routine Facility Inspections Performed	YES NO NA	
1.7 Other (Submission of Annual Report to EPA):		
Training		
1.8 Stormwater training for all applicable employees		
1.9 Waste management training		
1.10 Fuel spill response training		
1.11 Herb/Pesticide Appliction Certification/Training	🗌 YES 🗌 NO 🗌 NA	
1.12 Other:		
Other Documentation		
1.13 Do you have cumulative 1,320 aboveground fuel/oil storage? SPCC Plan available? Date of Plan?	🗆 YES 🗌 NO 🗌 NA	
REQUIRED ACTION(S):		
2.0 GENERAL HOUSEKEEPING		
2.1 Exposed areas clean and orderly	🗌 YES 🗌 NO	
2.2 Biodegradable or less hazardous products used where possible based products)		
2.3 Material inventory limited	YES NO	
2.4 Signs posted near outdoor hose bibs listing use restrictions	YES NO	
REQUIRED ACTION(S):		
3.0 SPILL PREVENTION		
3.1 Spill Response Plan posted & current	YES NO	
3.2 Spill kits located where spills are probable to occur	YES NO	
3.3 Spill kits stocked with appropriate materials	YES NO	
3.4 Spill(s) or staining observed	YES NO	
3.5 Drip pans/ spill mats/ booms used	YES NO	
3.6 Collected spill materials properly disposed	YES NO	
3.7 Spill History	YES NO	
REQUIRED ACTION(S):		

4.0 MAINTENANCE ACTIVITIES NA Subcontrator:		Comments
4.1 Performed indoors or under storm resistant cover when practical	YES NO	
4.2 Performed away from storm drains or drains covered	YES NO	
4.3 Parts cleaning & degreasing performed indoors or under cover		
4.4 Designated areas for temp tanker/materials truck parking	YES NO	
4.5 Exposure to run-on & run-off minimized	YES NO	
4.6 Oil, grease, solvents, batteries, etc. recycled	YES NO	
4.7 Other:	YES NO	
REQUIRED ACTION(S):		
5.0 FUEL STORAGE AND DELIVERY	□ NA	
5.1 "No Topping Off" signs present at vehicle fueling station	YES NO	
5.2 Fueling tanks fitted with monitoring and alarm equip	YES NO	
5.3 Fueling tanks fitted with breakaway hose connections	YES NO	
5.4 Accidental releases blocked from reaching storm drains	YES NO	
5.5 Equipment fueled in designated areas	YES NO	
5.6 Other:	YES NO	
REQUIRED ACTION(S):		
6.0 HAZARDOUS WASTE/MATERIAL STORAGE AREAS	□ NA	
6.1 Materials stored indoors and away from exit doors or under	YES NO	
storm-resistant cover when practical 6.2 Outdoor materials stored and handled in paved areas	 YESNO	
	YESNO	
6.3 Contained by berms, secondary containment, etc.		
6.4 Secondary containment adequately sized		
6.5 Containers clearly labeled and appropriate	YES NO □ YES NO	
6.6 Liquids dispensed from upright drums w/ hand pumps	YESNO	
6.7 Signage posted indicating materials being stored		
6.8 MSDS available	□ YES NO □ YES NO	
6.9 Bone yard(s) present REQUIRED ACTION(S):		<u> </u>
7.0 SOLID WASTE YES		lor:
7.1 Waste and unusable material disposed of properly	YESNO YESNO	
7.2 Garbage collection area properly maintained	YESNO	
7.3 Dumpster drains equipped with plugs	YESNO	
7.4 Dumpster lids closed REQUIRED ACTION(S):		

8.0 BUILDING & GROUNDS MAINTENANCE		Comments
	YES NO Subcontractors:	
8.1 Building maintenance waste disposed of properly		
8.2 Interior floor cleaning water properly disposed	YES NO	
8.3 Indoor oil/water separator maintenanced		
8.4 Fire fighting foam deluge system tested and maintained, if	fapplicable 🗌 YES 🗌 NO	
8.5 Other:		
Grounds Maintenance 🛛 YE	ES NO Subcontractor:	
8.6 Landscaping waste properly disposed	YES NO	
8.7 Exterior ground surfaces cleaned properly	YESNO	
8.8 Use of pesticide, herbicide and fertilizer minimized		
8.9 Records for pesticide/herbicide use?	YESNO	
8.10 Landscaping provided for erosion control		
8.11 Outdoor oil/water separator maintenanced	YES NO	
8.12 Other: 🗌 NA		
Storm Drains		
8.13 Storm drains clean and free of debris	YES NO	
8.14 Storm drains labeled "no dumping, drains to river"	YES NO	
8.15 Stormwater control devices maintained (e.g., hay bales, basins)	YES NO	
8.16 Catch basins clean and maintained		
8.17 Other:	YES NO	
REQUIRED ACTION(S):		
9.0 SIDEWALK / ROAD DEICING		
9.1 Does tenant perform sidewalk deicing?		
9.2 Does tenant perform roadway deicing?		
9.3 Salt storage areas are protected from stormwater?		
9.4 Tracks annual volume of salt used?	YES NO	
REQUIRED ACTION(S):		
10.0 NON-STORMWATER DISCHARGES OBSERVED		
10.1 Evidence of illicit discharges and improper disposal (i.e.	VES NO	
wash waters, waste water, chemicals, etc)		
10.2 Irrigation runoff		
10.3 Building condensation		
10.4 Other (NPDES permits):	YES NO	
REQUIRED ACTION(S):		
11.0 MISCELLANEOUS WASTES	- <u>-</u>	
11.1 Animal wastes generated		
11.2 Kitchen/food wastes generated		
	YES NO	
11.4 Other:		
REQUIRED ACTION(S):		

12.0 VEHICLE AND EQUIPMENT CLEANING						
		WET-WASH		Other / Comment		
Wash the following? (3.1)	Dry-Wash	Inside	Outside in Permitted			
		maide	Area			
Vehicles YES NO SUB:						
EquipmentYESNOSUB:						
Other: 🗌 YES 🗌 NO 🗌 SUB:						
Washing areas permitted 🛛 🗌 YES 🔲 NO						
13.0 VEHICLE AND EQUIPMENT STORAGE						
			OUTSIDE	Other / Comment		
Store the following? (4.1)	Inside	Under	Away from Drains			
		Cover	Away Ironi Drains			
Vehicles 🗌 YES 🗌 NO 🗌 SUB						
Equipment NO SUB						
Other: YES NO SUB						
Storage areas maintained VES NO						
14.0 DESCRIPTION OF STORM WATER DRAINAGE						
15.0 DESCRIPTION OF EXISTING STRUCTURAL BMPS AND CO	ONDITION					
INSPECTION SUMMARY						
Major Non-Compliances Issues (Immediate threat to storm	water)					
Minor Non-Compliance Issues (potential threat to stormwater/documentation)						
INSPECTOR SIGNATURE			Time Complete	Contact Initials		
Name: Signature:			complete			
Name: Signature:						
ÿ	JI					

University of New Mexico Illicit Discharge Incident Report Form

RESPONDER INFORMATION - hotline incidents only					
Responder:			Call Date:	Call Time:	
REPORTER INFO	ORMATION				
Incident Time:			Incident Date:		
Precipiation (ind	ches) in past 24-48 hrs:				
Caller Contact Ir	nformation:				
INCIDENT LOCA	TION - complete one or more be	low			
Latitude and Lo	ngitude:				
Stream address	or outfall #:				
Closest street ad	ddress:				
Nearby landmar	- ſk:				
Primary Locatio	n Description		Secondary Location Description		
□ Stream Corrie (In or adjacent t		Outfall In-Stream Flo		□ Along Banks	
Upland Area Near Storm Drain Near other water source (storm water pond, wetland, etc.): (Land not adjacent to stream) Near Storm Drain Near other water source (storm water pond, wetland, etc.): Narrative Description of Location: Near Storm Drain Near Storm Drain					
UPLOAD PROBL	EM INDICATOR DESCRIPTION		1		
Dumping		□ Oil/solvents/chemicals □Sewage			
□ Wash water, suds, etc.		Other:			
STREAM CORRI	DOR PROBLEM INDICATOR DESC	RIPTION			
Odor	□ None	□ Sewage	□ Rancid/Sour	Petroleum (gas)	
Odor	□ Sulfide (rotten eggs); natural	Other:			
A	Normal	🗆 Oil Sheen	Cloudy	□ Suds	
Appearance	□ Other:				
Fleeteblee	□ None	□ Sewage (toilet paper, etc)	□ Algae	Dead Fish	
Floatables		Outfall			
	ption of problem indicators: tor (Name, personal or vehicle d	escription, license plate # , etc)			